// CLI/Python toolkit for rapid bioinformatics queries. Preferred for quick BLAST searches. Access to 20+ databases: gene info (Ensembl/UniProt), AlphaFold, ARCHS4, Enrichr, OpenTargets, COSMIC, genome downloads. For advanced BLAST/batch processing, use biopython. For multi-database integration, use bioservices.
| name | gget |
| description | CLI/Python toolkit for rapid bioinformatics queries. Preferred for quick BLAST searches. Access to 20+ databases: gene info (Ensembl/UniProt), AlphaFold, ARCHS4, Enrichr, OpenTargets, COSMIC, genome downloads. For advanced BLAST/batch processing, use biopython. For multi-database integration, use bioservices. |
gget is a command-line bioinformatics tool and Python package providing unified access to 20+ genomic databases and analysis methods. Query gene information, sequence analysis, protein structures, expression data, and disease associations through a consistent interface. All gget modules work both as command-line tools and as Python functions.
Important: The databases queried by gget are continuously updated, which sometimes changes their structure. gget modules are tested automatically on a biweekly basis and updated to match new database structures when necessary.
Install gget in a clean virtual environment to avoid conflicts:
# Using uv (recommended)
uv uv pip install gget
# Or using pip
uv pip install --upgrade gget
# In Python/Jupyter
import gget
Basic usage pattern for all modules:
# Command-line
gget <module> [arguments] [options]
# Python
gget.module(arguments, options)
Most modules return:
-csv flagCommon flags across modules:
-o/--out: Save results to file-q/--quiet: Suppress progress information-csv: Return CSV format (command-line only)Retrieve download links and metadata for Ensembl reference genomes.
Parameters:
species: Genus_species format (e.g., 'homo_sapiens', 'mus_musculus'). Shortcuts: 'human', 'mouse'-w/--which: Specify return types (gtf, cdna, dna, cds, cdrna, pep). Default: all-r/--release: Ensembl release number (default: latest)-l/--list_species: List available vertebrate species-liv/--list_iv_species: List available invertebrate species-ftp: Return only FTP links-d/--download: Download files (requires curl)Examples:
# List available species
gget ref --list_species
# Get all reference files for human
gget ref homo_sapiens
# Download only GTF annotation for mouse
gget ref -w gtf -d mouse
# Python
gget.ref("homo_sapiens")
gget.ref("mus_musculus", which="gtf", download=True)
Locate genes by name or description across species.
Parameters:
searchwords: One or more search terms (case-insensitive)-s/--species: Target species (e.g., 'homo_sapiens', 'mouse')-r/--release: Ensembl release number-t/--id_type: Return 'gene' (default) or 'transcript'-ao/--andor: 'or' (default) finds ANY searchword; 'and' requires ALL-l/--limit: Maximum results to returnReturns: ensembl_id, gene_name, ensembl_description, ext_ref_description, biotype, URL
Examples:
# Search for GABA-related genes in human
gget search -s human gaba gamma-aminobutyric
# Find specific gene, require all terms
gget search -s mouse -ao and pax7 transcription
# Python
gget.search(["gaba", "gamma-aminobutyric"], species="homo_sapiens")
Retrieve comprehensive gene and transcript metadata from Ensembl, UniProt, and NCBI.
Parameters:
ens_ids: One or more Ensembl IDs (also supports WormBase, Flybase IDs). Limit: ~1000 IDs-n/--ncbi: Disable NCBI data retrieval-u/--uniprot: Disable UniProt data retrieval-pdb: Include PDB identifiers (increases runtime)Returns: UniProt ID, NCBI gene ID, primary gene name, synonyms, protein names, descriptions, biotype, canonical transcript
Examples:
# Get info for multiple genes
gget info ENSG00000034713 ENSG00000104853 ENSG00000170296
# Include PDB IDs
gget info ENSG00000034713 -pdb
# Python
gget.info(["ENSG00000034713", "ENSG00000104853"], pdb=True)
Fetch nucleotide or amino acid sequences for genes and transcripts.
Parameters:
ens_ids: One or more Ensembl identifiers-t/--translate: Fetch amino acid sequences instead of nucleotide-iso/--isoforms: Return all transcript variants (gene IDs only)Returns: FASTA format sequences
Examples:
# Get nucleotide sequences
gget seq ENSG00000034713 ENSG00000104853
# Get all protein isoforms
gget seq -t -iso ENSG00000034713
# Python
gget.seq(["ENSG00000034713"], translate=True, isoforms=True)
BLAST nucleotide or amino acid sequences against standard databases.
Parameters:
sequence: Sequence string or path to FASTA/.txt file-p/--program: blastn, blastp, blastx, tblastn, tblastx (auto-detected)-db/--database:
-l/--limit: Max hits (default: 50)-e/--expect: E-value cutoff (default: 10.0)-lcf/--low_comp_filt: Enable low complexity filtering-mbo/--megablast_off: Disable MegaBLAST (blastn only)Examples:
# BLAST protein sequence
gget blast MKWMFKEDHSLEHRCVESAKIRAKYPDRVPVIVEKVSGSQIVDIDKRKYLVPSDITVAQFMWIIRKRIQLPSEKAIFLFVDKTVPQSR
# BLAST from file with specific database
gget blast sequence.fasta -db swissprot -l 10
# Python
gget.blast("MKWMFK...", database="swissprot", limit=10)
Locate genomic positions of sequences using UCSC BLAT.
Parameters:
sequence: Sequence string or path to FASTA/.txt file-st/--seqtype: 'DNA', 'protein', 'translated%20RNA', 'translated%20DNA' (auto-detected)-a/--assembly: Target assembly (default: 'human'/hg38; options: 'mouse'/mm39, 'zebrafinch'/taeGut2, etc.)Returns: genome, query size, alignment positions, matches, mismatches, alignment percentage
Examples:
# Find genomic location in human
gget blat ATCGATCGATCGATCG
# Search in different assembly
gget blat -a mm39 ATCGATCGATCGATCG
# Python
gget.blat("ATCGATCGATCGATCG", assembly="mouse")
Align multiple nucleotide or amino acid sequences using Muscle5.
Parameters:
fasta: Sequences or path to FASTA/.txt file-s5/--super5: Use Super5 algorithm for faster processing (large datasets)Returns: Aligned sequences in ClustalW format or aligned FASTA (.afa)
Examples:
# Align sequences from file
gget muscle sequences.fasta -o aligned.afa
# Use Super5 for large dataset
gget muscle large_dataset.fasta -s5
# Python
gget.muscle("sequences.fasta", save=True)
Perform fast local protein or translated DNA alignment using DIAMOND.
Parameters:
--reference: Reference sequences (string/list) or FASTA file path (required)--sensitivity: fast, mid-sensitive, sensitive, more-sensitive, very-sensitive (default), ultra-sensitive--threads: CPU threads (default: 1)--diamond_db: Save database for reuse--translated: Enable nucleotide-to-amino acid alignmentReturns: Identity percentage, sequence lengths, match positions, gap openings, E-values, bit scores
Examples:
# Align against reference
gget diamond GGETISAWESQME -ref reference.fasta --threads 4
# Save database for reuse
gget diamond query.fasta -ref ref.fasta --diamond_db my_db.dmnd
# Python
gget.diamond("GGETISAWESQME", reference="reference.fasta", threads=4)
Query RCSB Protein Data Bank for structure and metadata.
Parameters:
pdb_id: PDB identifier (e.g., '7S7U')-r/--resource: Data type (pdb, entry, pubmed, assembly, entity types)-i/--identifier: Assembly, entity, or chain IDReturns: PDB format (structures) or JSON (metadata)
Examples:
# Download PDB structure
gget pdb 7S7U -o 7S7U.pdb
# Get metadata
gget pdb 7S7U -r entry
# Python
gget.pdb("7S7U", save=True)
Predict 3D protein structures using simplified AlphaFold2.
Setup Required:
# Install OpenMM first
uv pip install openmm
# Then setup AlphaFold
gget setup alphafold
Parameters:
sequence: Amino acid sequence (string), multiple sequences (list), or FASTA file. Multiple sequences trigger multimer modeling-mr/--multimer_recycles: Recycling iterations (default: 3; recommend 20 for accuracy)-mfm/--multimer_for_monomer: Apply multimer model to single proteins-r/--relax: AMBER relaxation for top-ranked modelplot: Python-only; generate interactive 3D visualization (default: True)show_sidechains: Python-only; include side chains (default: True)Returns: PDB structure file, JSON alignment error data, optional 3D visualization
Examples:
# Predict single protein structure
gget alphafold MKWMFKEDHSLEHRCVESAKIRAKYPDRVPVIVEKVSGSQIVDIDKRKYLVPSDITVAQFMWIIRKRIQLPSEKAIFLFVDKTVPQSR
# Predict multimer with higher accuracy
gget alphafold sequence1.fasta -mr 20 -r
# Python with visualization
gget.alphafold("MKWMFK...", plot=True, show_sidechains=True)
# Multimer prediction
gget.alphafold(["sequence1", "sequence2"], multimer_recycles=20)
Predict Eukaryotic Linear Motifs in protein sequences.
Setup Required:
gget setup elm
Parameters:
sequence: Amino acid sequence or UniProt Acc-u/--uniprot: Indicates sequence is UniProt Acc-e/--expand: Include protein names, organisms, references-s/--sensitivity: DIAMOND alignment sensitivity (default: "very-sensitive")-t/--threads: Number of threads (default: 1)Returns: Two outputs:
Examples:
# Predict motifs from sequence
gget elm LIAQSIGQASFV -o results
# Use UniProt accession with expanded info
gget elm --uniprot Q02410 -e
# Python
ortholog_df, regex_df = gget.elm("LIAQSIGQASFV")
Query ARCHS4 database for correlated genes or tissue expression data.
Parameters:
gene: Gene symbol or Ensembl ID (with --ensembl flag)-w/--which: 'correlation' (default, returns 100 most correlated genes) or 'tissue' (expression atlas)-s/--species: 'human' (default) or 'mouse' (tissue data only)-e/--ensembl: Input is Ensembl IDReturns:
Examples:
# Get correlated genes
gget archs4 ACE2
# Get tissue expression
gget archs4 -w tissue ACE2
# Python
gget.archs4("ACE2", which="tissue")
Query CZ CELLxGENE Discover Census for single-cell data.
Setup Required:
gget setup cellxgene
Parameters:
--gene (-g): Gene names or Ensembl IDs (case-sensitive! 'PAX7' for human, 'Pax7' for mouse)--tissue: Tissue type(s)--cell_type: Specific cell type(s)--species (-s): 'homo_sapiens' (default) or 'mus_musculus'--census_version (-cv): Version ("stable", "latest", or dated)--ensembl (-e): Use Ensembl IDs--meta_only (-mo): Return metadata onlyReturns: AnnData object with count matrices and metadata (or metadata-only dataframes)
Examples:
# Get single-cell data for specific genes and cell types
gget cellxgene --gene ACE2 ABCA1 --tissue lung --cell_type "mucus secreting cell" -o lung_data.h5ad
# Metadata only
gget cellxgene --gene PAX7 --tissue muscle --meta_only -o metadata.csv
# Python
adata = gget.cellxgene(gene=["ACE2", "ABCA1"], tissue="lung", cell_type="mucus secreting cell")
Perform ontology enrichment analysis on gene lists using Enrichr.
Parameters:
genes: Gene symbols or Ensembl IDs-db/--database: Reference database (supports shortcuts: 'pathway', 'transcription', 'ontology', 'diseases_drugs', 'celltypes')-s/--species: human (default), mouse, fly, yeast, worm, fish-bkg_l/--background_list: Background genes for comparison-ko/--kegg_out: Save KEGG pathway images with highlighted genesplot: Python-only; generate graphical resultsDatabase Shortcuts:
Examples:
# Enrichment analysis for ontology
gget enrichr -db ontology ACE2 AGT AGTR1
# Save KEGG pathways
gget enrichr -db pathway ACE2 AGT AGTR1 -ko ./kegg_images/
# Python with plot
gget.enrichr(["ACE2", "AGT", "AGTR1"], database="ontology", plot=True)
Retrieve orthology and gene expression data from Bgee database.
Parameters:
ens_id: Ensembl gene ID or NCBI gene ID (for non-Ensembl species). Multiple IDs supported when type=expression-t/--type: 'orthologs' (default) or 'expression'Returns:
Examples:
# Get orthologs
gget bgee ENSG00000169194
# Get expression data
gget bgee ENSG00000169194 -t expression
# Multiple genes
gget bgee ENSBTAG00000047356 ENSBTAG00000018317 -t expression
# Python
gget.bgee("ENSG00000169194", type="orthologs")
Retrieve disease and drug associations from OpenTargets.
Parameters:
-r/--resource: diseases (default), drugs, tractability, pharmacogenetics, expression, depmap, interactions-l/--limit: Cap results count--filter_disease--filter_drug--filter_tissue, --filter_anat_sys, --filter_organ--filter_protein_a, --filter_protein_b, --filter_gene_bExamples:
# Get associated diseases
gget opentargets ENSG00000169194 -r diseases -l 5
# Get associated drugs
gget opentargets ENSG00000169194 -r drugs -l 10
# Get tissue expression
gget opentargets ENSG00000169194 -r expression --filter_tissue brain
# Python
gget.opentargets("ENSG00000169194", resource="diseases", limit=5)
Plot cancer genomics heatmaps using cBioPortal data.
Two subcommands:
search - Find study IDs:
gget cbio search breast lung
plot - Generate heatmaps:
Parameters:
-s/--study_ids: Space-separated cBioPortal study IDs (required)-g/--genes: Space-separated gene names or Ensembl IDs (required)-st/--stratification: Column to organize data (tissue, cancer_type, cancer_type_detailed, study_id, sample)-vt/--variation_type: Data type (mutation_occurrences, cna_nonbinary, sv_occurrences, cna_occurrences, Consequence)-f/--filter: Filter by column value (e.g., 'study_id:msk_impact_2017')-dd/--data_dir: Cache directory (default: ./gget_cbio_cache)-fd/--figure_dir: Output directory (default: ./gget_cbio_figures)-dpi: Resolution (default: 100)-sh/--show: Display plot in window-nc/--no_confirm: Skip download confirmationsExamples:
# Search for studies
gget cbio search esophag ovary
# Create heatmap
gget cbio plot -s msk_impact_2017 -g AKT1 ALK BRAF -st tissue -vt mutation_occurrences
# Python
gget.cbio_search(["esophag", "ovary"])
gget.cbio_plot(["msk_impact_2017"], ["AKT1", "ALK"], stratification="tissue")
Search COSMIC (Catalogue Of Somatic Mutations In Cancer) database.
Important: License fees apply for commercial use. Requires COSMIC account credentials.
Parameters:
searchterm: Gene name, Ensembl ID, mutation notation, or sample ID-ctp/--cosmic_tsv_path: Path to downloaded COSMIC TSV file (required for querying)-l/--limit: Maximum results (default: 100)Database download flags:
-d/--download_cosmic: Activate download mode-gm/--gget_mutate: Create version for gget mutate-cp/--cosmic_project: Database type (cancer, census, cell_line, resistance, genome_screen, targeted_screen)-cv/--cosmic_version: COSMIC version-gv/--grch_version: Human reference genome (37 or 38)--email, --password: COSMIC credentialsExamples:
# First download database
gget cosmic -d --email user@example.com --password xxx -cp cancer
# Then query
gget cosmic EGFR -ctp cosmic_data.tsv -l 10
# Python
gget.cosmic("EGFR", cosmic_tsv_path="cosmic_data.tsv", limit=10)
Generate mutated nucleotide sequences from mutation annotations.
Parameters:
sequences: FASTA file path or direct sequence input (string/list)-m/--mutations: CSV/TSV file or DataFrame with mutation data (required)-mc/--mut_column: Mutation column name (default: 'mutation')-sic/--seq_id_column: Sequence ID column (default: 'seq_ID')-mic/--mut_id_column: Mutation ID column-k/--k: Length of flanking sequences (default: 30 nucleotides)Returns: Mutated sequences in FASTA format
Examples:
# Single mutation
gget mutate ATCGCTAAGCT -m "c.4G>T"
# Multiple sequences with mutations from file
gget mutate sequences.fasta -m mutations.csv -o mutated.fasta
# Python
import pandas as pd
mutations_df = pd.DataFrame({"seq_ID": ["seq1"], "mutation": ["c.4G>T"]})
gget.mutate(["ATCGCTAAGCT"], mutations=mutations_df)
Generate natural language text using OpenAI's API.
Setup Required:
gget setup gpt
Important: Free tier limited to 3 months after account creation. Set monthly billing limits.
Parameters:
prompt: Text input for generation (required)api_key: OpenAI authentication (required)Examples:
gget gpt "Explain CRISPR" --api_key your_key_here
# Python
gget.gpt("Explain CRISPR", api_key="your_key_here")
Install/download third-party dependencies for specific modules.
Parameters:
module: Module name requiring dependency installation-o/--out: Output folder path (elm module only)Modules requiring setup:
alphafold - Downloads ~4GB of model parameterscellxgene - Installs cellxgene-census (may not support latest Python)elm - Downloads local ELM databasegpt - Configures OpenAI integrationExamples:
# Setup AlphaFold
gget setup alphafold
# Setup ELM with custom directory
gget setup elm -o /path/to/elm_data
# Python
gget.setup("alphafold")
Find and analyze genes of interest:
# 1. Search for genes
results = gget.search(["GABA", "receptor"], species="homo_sapiens")
# 2. Get detailed information
gene_ids = results["ensembl_id"].tolist()
info = gget.info(gene_ids[:5])
# 3. Retrieve sequences
sequences = gget.seq(gene_ids[:5], translate=True)
Align sequences and predict structures:
# 1. Align multiple sequences
alignment = gget.muscle("sequences.fasta")
# 2. Find similar sequences
blast_results = gget.blast(my_sequence, database="swissprot", limit=10)
# 3. Predict structure
structure = gget.alphafold(my_sequence, plot=True)
# 4. Find linear motifs
ortholog_df, regex_df = gget.elm(my_sequence)
Analyze expression patterns and functional enrichment:
# 1. Get tissue expression
tissue_expr = gget.archs4("ACE2", which="tissue")
# 2. Find correlated genes
correlated = gget.archs4("ACE2", which="correlation")
# 3. Get single-cell data
adata = gget.cellxgene(gene=["ACE2"], tissue="lung", cell_type="epithelial cell")
# 4. Perform enrichment analysis
gene_list = correlated["gene_symbol"].tolist()[:50]
enrichment = gget.enrichr(gene_list, database="ontology", plot=True)
Investigate disease associations and therapeutic targets:
# 1. Search for genes
genes = gget.search(["breast cancer"], species="homo_sapiens")
# 2. Get disease associations
diseases = gget.opentargets("ENSG00000169194", resource="diseases")
# 3. Get drug associations
drugs = gget.opentargets("ENSG00000169194", resource="drugs")
# 4. Query cancer genomics data
study_ids = gget.cbio_search(["breast"])
gget.cbio_plot(study_ids[:2], ["BRCA1", "BRCA2"], stratification="cancer_type")
# 5. Search COSMIC for mutations
cosmic_results = gget.cosmic("BRCA1", cosmic_tsv_path="cosmic.tsv")
Compare proteins across species:
# 1. Get orthologs
orthologs = gget.bgee("ENSG00000169194", type="orthologs")
# 2. Get sequences for comparison
human_seq = gget.seq("ENSG00000169194", translate=True)
mouse_seq = gget.seq("ENSMUSG00000026091", translate=True)
# 3. Align sequences
alignment = gget.muscle([human_seq, mouse_seq])
# 4. Compare structures
human_structure = gget.pdb("7S7U")
mouse_structure = gget.alphafold(mouse_seq)
Prepare reference data for downstream analysis (e.g., kallisto|bustools):
# 1. List available species
gget ref --list_species
# 2. Download reference files
gget ref -w gtf -w cdna -d homo_sapiens
# 3. Build kallisto index
kallisto index -i transcriptome.idx transcriptome.fasta
# 4. Download genome for alignment
gget ref -w dna -d homo_sapiens
--limit to control result sizes for large queries-o/--out for reproducibility--quiet in production scripts to reduce outputgget diamond with --threads for faster local alignment--diamond_db for repeated queries-s5/--super5 for large datasetsgget setup before first use of alphafold, cellxgene, elm, gpt-dd to avoid repeated downloads-mr 20 for higher accuracy-r flag for AMBER relaxation of final structuresplot=Trueuv pip install --upgrade gget-csv flagjson=True parametersave=True or specify out="filename"This skill includes reference documentation for detailed module information:
module_reference.md - Comprehensive parameter reference for all modulesdatabase_info.md - Information about queried databases and their update frequenciesworkflows.md - Extended workflow examples and use casesFor additional help: