// Create professional PDF reports with text, tables, and embedded images using reportlab. Works with ANY LLM provider (GPT, Gemini, Claude, etc.).
| name | data-export-pdf |
| title | PDF Report Generation (Universal) |
| description | Create professional PDF reports with text, tables, and embedded images using reportlab. Works with ANY LLM provider (GPT, Gemini, Claude, etc.). |
This skill enables you to create professional PDF reports containing analysis summaries, formatted tables, and embedded visualizations. Unlike cloud-hosted solutions, this skill uses the reportlab Python library and executes locally in your environment, making it compatible with ALL LLM providers including GPT, Gemini, Claude, DeepSeek, and Qwen.
from reportlab.lib.pagesizes import letter, A4
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak, Image
from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_JUSTIFY
from datetime import datetime
import matplotlib.pyplot as plt
# Create PDF file
pdf_filename = "analysis_report.pdf"
doc = SimpleDocTemplate(pdf_filename, pagesize=letter)
story = [] # Container for PDF elements
# Get default styles
styles = getSampleStyleSheet()
title_style = styles['Title']
heading_style = styles['Heading1']
normal_style = styles['Normal']
# Add title
story.append(Paragraph("Analysis Report", title_style))
story.append(Spacer(1, 0.2*inch))
# Add date
date_text = f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M')}"
story.append(Paragraph(date_text, normal_style))
story.append(Spacer(1, 0.3*inch))
# Build PDF
doc.build(story)
print(f"✅ PDF saved to: {pdf_filename}")
story = []
# Title
story.append(Paragraph("Single-Cell RNA-seq Analysis Report", title_style))
story.append(Spacer(1, 0.2*inch))
# Section heading
story.append(Paragraph("1. Overview", heading_style))
story.append(Spacer(1, 0.1*inch))
# Paragraph text
overview_text = """
This report summarizes the single-cell RNA-seq analysis performed on the dataset.
The analysis includes quality control, normalization, dimensionality reduction,
clustering, and cell type annotation.
"""
story.append(Paragraph(overview_text, normal_style))
story.append(Spacer(1, 0.2*inch))
# Prepare table data
table_data = [
['Metric', 'Value'], # Header
['Total Cells', '5,000'],
['Total Genes', '20,000'],
['Mean Genes/Cell', '2,500'],
['Median UMIs/Cell', '10,000']
]
# Create table
table = Table(table_data, colWidths=[2.5*inch, 2*inch])
# Style table
table.setStyle(TableStyle([
# Header styling
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
# Body styling
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('FONTNAME', (0, 1), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 1), (-1, -1), 10),
]))
story.append(table)
story.append(Spacer(1, 0.3*inch))
# Save matplotlib figure first
fig, ax = plt.subplots(figsize=(6, 4))
# ... create your plot ...
plot_filename = "temp_plot.png"
fig.savefig(plot_filename, dpi=150, bbox_inches='tight')
plt.close(fig)
# Add image to PDF
story.append(Paragraph("2. UMAP Visualization", heading_style))
story.append(Spacer(1, 0.1*inch))
img = Image(plot_filename, width=4*inch, height=3*inch)
story.append(img)
story.append(Spacer(1, 0.2*inch))
from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image
from datetime import datetime
import matplotlib.pyplot as plt
import pandas as pd
def create_analysis_report(adata, output_path="analysis_report.pdf"):
"""Create comprehensive PDF analysis report"""
# Initialize PDF
doc = SimpleDocTemplate(output_path, pagesize=letter)
story = []
styles = getSampleStyleSheet()
# Title
story.append(Paragraph("Single-Cell RNA-seq Analysis Report", styles['Title']))
story.append(Spacer(1, 0.2*inch))
story.append(Paragraph(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M')}", styles['Normal']))
story.append(Spacer(1, 0.3*inch))
# Overview
story.append(Paragraph("1. Dataset Overview", styles['Heading1']))
story.append(Spacer(1, 0.1*inch))
overview_data = [
['Metric', 'Value'],
['Total Cells', f'{adata.n_obs:,}'],
['Total Genes', f'{adata.n_vars:,}'],
['Observations', ', '.join(adata.obs.columns[:5].tolist())],
]
table = Table(overview_data, colWidths=[2.5*inch, 3.5*inch])
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
]))
story.append(table)
story.append(Spacer(1, 0.3*inch))
# Cluster distribution
if 'clusters' in adata.obs:
story.append(Paragraph("2. Cluster Distribution", styles['Heading1']))
story.append(Spacer(1, 0.1*inch))
cluster_counts = adata.obs['clusters'].value_counts().sort_index()
cluster_data = [['Cluster', 'Cell Count', 'Percentage']]
total_cells = adata.n_obs
for cluster, count in cluster_counts.items():
percentage = (count / total_cells) * 100
cluster_data.append([str(cluster), str(count), f'{percentage:.1f}%'])
table = Table(cluster_data, colWidths=[1.5*inch, 1.5*inch, 1.5*inch])
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('BACKGROUND', (0, 1), (-1, -1), colors.lightblue),
]))
story.append(table)
story.append(Spacer(1, 0.3*inch))
# Visualization (if UMAP exists)
if 'X_umap' in adata.obsm:
story.append(Paragraph("3. UMAP Visualization", styles['Heading1']))
story.append(Spacer(1, 0.1*inch))
# Create UMAP plot
fig, ax = plt.subplots(figsize=(6, 5))
scatter = ax.scatter(
adata.obsm['X_umap'][:, 0],
adata.obsm['X_umap'][:, 1],
c=adata.obs['clusters'].astype('category').cat.codes if 'clusters' in adata.obs else 'blue',
s=5, alpha=0.5
)
ax.set_xlabel('UMAP1')
ax.set_ylabel('UMAP2')
ax.set_title('UMAP Projection')
plot_path = 'temp_umap.png'
fig.savefig(plot_path, dpi=150, bbox_inches='tight')
plt.close(fig)
img = Image(plot_path, width=5*inch, height=4*inch)
story.append(img)
# Build PDF
doc.build(story)
print(f"✅ PDF report saved to: {output_path}")
return output_path
# Usage
create_analysis_report(adata, "my_analysis_report.pdf")
letter (US) or A4 (international) for standard documentsleftMargin, rightMargin, etc.from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
def add_header_footer(canvas_obj, doc):
canvas_obj.saveState()
# Header
canvas_obj.setFont('Helvetica', 9)
canvas_obj.drawString(inch, letter[1] - 0.5*inch, "Analysis Report")
# Footer
canvas_obj.drawString(inch, 0.5*inch, f"Page {doc.page}")
canvas_obj.restoreState()
doc = SimpleDocTemplate(pdf_filename, pagesize=letter)
doc.build(story, onFirstPage=add_header_footer, onLaterPages=add_header_footer)
from reportlab.platypus import Frame, PageTemplate
frame1 = Frame(doc.leftMargin, doc.bottomMargin, doc.width/2-6, doc.height, id='col1')
frame2 = Frame(doc.leftMargin+doc.width/2+6, doc.bottomMargin, doc.width/2-6, doc.height, id='col2')
doc.addPageTemplates([PageTemplate(id='TwoCol', frames=[frame1, frame2])])
# Highlight significant results
for i, row in enumerate(deg_results):
if row['qvalue'] < 0.05:
table.setStyle(TableStyle([
('BACKGROUND', (0, i+1), (-1, i+1), colors.yellow)
]))
qc_metrics = {
'Total Cells': adata.n_obs,
'Median Genes/Cell': int(adata.obs['n_genes'].median()),
'Median UMIs/Cell': int(adata.obs['n_counts'].median()),
'Mean Mito %': f"{adata.obs['percent_mito'].mean():.2f}%"
}
table_data = [['Metric', 'Value']] + [[k, str(v)] for k, v in qc_metrics.items()]
# ... create table as shown above
# Top 10 upregulated genes
top_genes = deg_df.nlargest(10, 'log2FC')[['gene', 'log2FC', 'qvalue']]
table_data = [['Gene', 'log2FC', 'Q-value']]
for _, row in top_genes.iterrows():
table_data.append([row['gene'], f"{row['log2FC']:.2f}", f"{row['qvalue']:.2e}"])
Solution:
import subprocess
subprocess.check_call(['pip', 'install', 'reportlab'])
Solution: Ensure image path is correct and file exists before adding to PDF:
import os
if os.path.exists(plot_filename):
img = Image(plot_filename, width=4*inch, height=3*inch)
story.append(img)
Solution: Reduce column widths or font size:
table = Table(data, colWidths=[1.5*inch, 1.5*inch, 2*inch])
table.setStyle(TableStyle([('FONTSIZE', (0, 0), (-1, -1), 8)]))
reportlab (pure Python, widely supported)