// Complete feature development lifecycle from research to deployment. Uses
| name | feature-dev-complete |
| description | Complete feature development lifecycle from research to deployment. Uses Gemini Search for best practices, architecture design, Codex prototyping, comprehensive testing, and documentation generation. Full 12-stage workflow. |
| tags | ["feature","development","lifecycle","multi-model","essential","tier-1"] |
| version | 1.0.0 |
| category | delivery |
| author | ruv |
Execute complete feature development lifecycle using multi-model AI orchestration.
I am a full-stack development coordinator using multi-model orchestration.
Methodology (Complete Lifecycle Pattern):
Models Used:
input:
feature_spec: string (feature description, required)
target_directory: string (default: src/)
create_pr: boolean (default: true)
deploy_after: boolean (default: false)
output:
artifacts:
research: markdown (best practices)
architecture: markdown (design doc)
diagrams: array[image] (visual docs)
implementation: directory (code)
tests: directory (test suite)
documentation: markdown (usage docs)
quality:
test_coverage: number (percentage)
quality_score: number (0-100)
security_issues: number
pr_url: string (if create_pr: true)
deployment_ready: boolean
#!/bin/bash
set -e
FEATURE_SPEC="$1"
TARGET_DIR="${2:-src/}"
OUTPUT_DIR="feature-$(date +%s)"
mkdir -p "$OUTPUT_DIR"
echo "================================================================"
echo "Complete Feature Development: $FEATURE_SPEC"
echo "================================================================"
# STAGE 1: Research Best Practices
echo "[1/12] Researching latest best practices..."
gemini "Latest 2025 best practices for: $FEATURE_SPEC" \
--grounding google-search \
--output "$OUTPUT_DIR/research.md"
# STAGE 2: Analyze Existing Codebase Patterns
echo "[2/12] Analyzing existing codebase patterns..."
LOC=$(find "$TARGET_DIR" -type f \( -name "*.js" -o -name "*.ts" \) | xargs wc -l | tail -1 | awk '{print $1}' || echo "0")
if [ "$LOC" -gt 5000 ]; then
gemini "Analyze architecture patterns for: $FEATURE_SPEC" \
--files "$TARGET_DIR" \
--model gemini-2.0-flash \
--output "$OUTPUT_DIR/codebase-analysis.md"
else
echo "Small codebase - skipping mega-context analysis"
fi
# STAGE 3: Initialize Development Swarm
echo "[3/12] Initializing development swarm..."
npx claude-flow coordination swarm-init \
--topology hierarchical \
--max-agents 6 \
--strategy balanced
# STAGE 4: Architecture Design
echo "[4/12] Designing architecture..."
# This would invoke SPARC architect in Claude Code
# For now, we document the pattern
cat > "$OUTPUT_DIR/architecture-design.md" <<EOF
# Architecture Design: $FEATURE_SPEC
## Research Findings
$(cat "$OUTPUT_DIR/research.md")
## Existing Patterns
$(cat "$OUTPUT_DIR/codebase-analysis.md" 2>/dev/null || echo "N/A")
## Proposed Architecture
[Generated by Claude Architect Agent]
## Design Decisions
[Key decisions with rationale]
EOF
# STAGE 5: Generate Architecture Diagrams
echo "[5/12] Generating architecture diagrams..."
gemini "Generate system architecture diagram for: $FEATURE_SPEC" \
--type image \
--output "$OUTPUT_DIR/architecture-diagram.png" \
--style technical
gemini "Generate data flow diagram for: $FEATURE_SPEC" \
--type image \
--output "$OUTPUT_DIR/data-flow.png" \
--style diagram
# STAGE 6: Rapid Prototyping
echo "[6/12] Rapid prototyping with Codex..."
codex --full-auto "Implement $FEATURE_SPEC following architecture design" \
--context "$OUTPUT_DIR/architecture-design.md" \
--context "$OUTPUT_DIR/research.md" \
--sandbox true \
--output "$OUTPUT_DIR/implementation/"
# STAGE 7: Theater Detection
echo "[7/12] Detecting placeholder code..."
npx claude-flow theater-detect "$OUTPUT_DIR/implementation/" \
--output "$OUTPUT_DIR/theater-report.json"
THEATER_COUNT=$(cat "$OUTPUT_DIR/theater-report.json" | jq '.issues | length')
if [ "$THEATER_COUNT" -gt 0 ]; then
echo "⚠️ Found $THEATER_COUNT placeholder items - fixing..."
# Auto-complete theater items
codex --full-auto "Complete all TODO and placeholder implementations" \
--context "$OUTPUT_DIR/theater-report.json" \
--context "$OUTPUT_DIR/implementation/" \
--sandbox true
fi
# STAGE 8: Comprehensive Testing with Codex Iteration
echo "[8/12] Testing with Codex auto-fix..."
npx claude-flow functionality-audit "$OUTPUT_DIR/implementation/" \
--model codex-auto \
--max-iterations 5 \
--sandbox true \
--output "$OUTPUT_DIR/test-results.json"
# STAGE 9: Style Audit & Polish
echo "[9/12] Polishing code quality..."
npx claude-flow style-audit "$OUTPUT_DIR/implementation/" \
--fix true \
--output "$OUTPUT_DIR/style-report.json"
# STAGE 10: Security Review
echo "[10/12] Security review..."
npx claude-flow security-scan "$OUTPUT_DIR/implementation/" \
--deep true \
--output "$OUTPUT_DIR/security-report.json"
SECURITY_CRITICAL=$(cat "$OUTPUT_DIR/security-report.json" | jq '.critical_issues')
if [ "$SECURITY_CRITICAL" -gt 0 ]; then
echo "🚨 Critical security issues found!"
cat "$OUTPUT_DIR/security-report.json" | jq '.critical_issues[]'
exit 1
fi
# STAGE 11: Documentation Generation
echo "[11/12] Generating documentation..."
cat > "$OUTPUT_DIR/FEATURE-DOCUMENTATION.md" <<EOF
# Feature Documentation: $FEATURE_SPEC
## Overview
$(cat "$OUTPUT_DIR/research.md" | head -10)
## Architecture

## Implementation
[Code location and structure]
## Usage
[Usage examples]
## Testing
- Test Coverage: $(cat "$OUTPUT_DIR/test-results.json" | jq '.coverage_percent')%
- Tests Passing: $(cat "$OUTPUT_DIR/test-results.json" | jq '.all_passed')
## Quality Metrics
- Quality Score: $(cat "$OUTPUT_DIR/style-report.json" | jq '.quality_score')/100
- Security Issues: 0 critical
---
🤖 Generated with Claude Code Complete Feature Development
EOF
# STAGE 12: Production Readiness Check
echo "[12/12] Final production readiness check..."
TESTS_PASSED=$(cat "$OUTPUT_DIR/test-results.json" | jq '.all_passed')
QUALITY_SCORE=$(cat "$OUTPUT_DIR/style-report.json" | jq '.quality_score')
SECURITY_OK=$([ "$SECURITY_CRITICAL" -eq 0 ] && echo "true" || echo "false")
if [ "$TESTS_PASSED" = "true" ] && [ "$QUALITY_SCORE" -ge 85 ] && [ "$SECURITY_OK" = "true" ]; then
echo "✅ Production ready!"
# Create PR if requested
if [ "${CREATE_PR:-true}" = "true" ]; then
echo "Creating pull request..."
# Copy implementation to target directory
cp -r "$OUTPUT_DIR/implementation/"* "$TARGET_DIR/"
# Git operations
git add .
git commit -m "feat: $FEATURE_SPEC
🤖 Generated with Claude Code Complete Feature Development
## Quality Metrics
- ✅ All tests passing
- ✅ Code quality: $QUALITY_SCORE/100
- ✅ Security: No critical issues
- ✅ Test coverage: $(cat "$OUTPUT_DIR/test-results.json" | jq '.coverage_percent')%
## Documentation
See $OUTPUT_DIR/FEATURE-DOCUMENTATION.md
Co-Authored-By: Claude <noreply@anthropic.com>"
# Create PR
gh pr create --title "feat: $FEATURE_SPEC" \
--body-file "$OUTPUT_DIR/FEATURE-DOCUMENTATION.md"
fi
else
echo "⚠️ Not production ready - review issues"
exit 1
fi
echo ""
echo "================================================================"
echo "Feature Development Complete!"
echo "================================================================"
echo ""
echo "Artifacts in: $OUTPUT_DIR/"
echo "- Research: research.md"
echo "- Architecture: architecture-design.md"
echo "- Diagrams: *.png"
echo "- Implementation: implementation/"
echo "- Tests: test-results.json"
echo "- Documentation: FEATURE-DOCUMENTATION.md"
echo ""
/sprint-automation cascade/feature-request-handler cascade/gemini-search, /gemini-megacontext, /gemini-media/codex-auto, /functionality-audit, /style-audit/theater-detect, /security-scan/swarm-init, /auto-agentquick-quality-check, smart-bug-fix (if issues found)code-review-assistant, documentation-generator# Develop complete feature
feature-dev-complete "User authentication with JWT and refresh tokens"
# Feature with custom target
feature-dev-complete "Payment processing integration" src/payments/
# Feature without PR
feature-dev-complete "Dark mode toggle" --create-pr false
Feature Development Complete operates on 3 fundamental principles:
Begin every feature by researching current best practices and analyzing existing codebase patterns before writing code. Knowledge gathered upfront prevents costly refactoring later.
In practice:
Leverage specialized AI models for their strengths - Gemini for research and diagrams, Codex for rapid prototyping, Claude for architecture and testing strategy. The right tool for each phase maximizes quality.
In practice:
Features must pass comprehensive testing, security review, and quality checks before reaching production. No shortcuts - automated gates ensure production readiness.
In practice:
| Anti-Pattern | Problem | Solution |
|---|---|---|
| Skipping Research Phase | Implementing outdated patterns or reinventing existing solutions | Always run Gemini Search for latest best practices before coding |
| Manual Quality Checks | Inconsistent reviews, missed security issues, subjective quality assessment | Automate theater detection, security scanning, and quality scoring |
| Sequential Workflow | Slow delivery from blocking dependencies (research -> design -> code -> test) | Parallelize independent phases (diagrams + prototyping, testing + security review) |
| Hardcoded Configuration | Brittle code requiring redeployment for config changes | Use environment variables, feature flags, and external config files |
| Theater Code in Production | Placeholder TODOs and incomplete implementations shipped to users | Run theater detection before testing phase and auto-complete all placeholders |
| Skipping Staging Validation | Production bugs from untested deployments | Always deploy to staging first and validate before production release |
Feature Development Complete embodies the philosophy that production-ready code requires systematic orchestration, not ad-hoc scripting. By combining multi-model AI research, automated quality gates, and comprehensive testing, this skill delivers features that are not just functional, but maintainable, secure, and performant from day one.
Use this skill when building features that matter - greenfield functionality, multi-layer changes, or anything requiring production deployment. The 12-stage workflow ensures nothing is missed, from research to documentation, while theater detection and security scanning prevent the technical debt that plagues rushed implementations.
The result is a consistent, repeatable process that transforms vague feature requests into production-ready code with >80% test coverage, comprehensive documentation, and zero critical security issues. When quality cannot be compromised, Feature Development Complete is the systematic approach that delivers.