// Master Archon MCP for strategic project management, task tracking, and knowledge base operations. The strategic layer (WHAT/WHEN) that coordinates with Skills (HOW). Use when managing projects, tracking tasks, querying knowledge bases, or implementing the Archon+Skills two-layer architecture.
| name | Archon Manager |
| description | Master Archon MCP for strategic project management, task tracking, and knowledge base operations. The strategic layer (WHAT/WHEN) that coordinates with Skills (HOW). Use when managing projects, tracking tasks, querying knowledge bases, or implementing the Archon+Skills two-layer architecture. |
| version | 1.0.0 |
| category | project-management |
| tags | ["project-management","knowledge-management","task-tracking","rag","strategic-planning"] |
| related_skills | ["rag-implementer","knowledge-base-manager","mvp-builder","product-strategist","multi-agent-architect"] |
| triggers | ["archon-manager","archon manager","archon","project management mcp","task tracking"] |
| supports_mcps | ["archon-mcp"] |
| required_tools | [] |
| required_integrations | ["supabase","openai"] |
Master Archon MCP for strategic project management and knowledge operations.
Archon is the command center for AI coding assistants, providing:
The Two-Layer Architecture:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ARCHON MCP SERVER โ
โ (Strategic Layer) โ
โ โ
โ โข Project management & task tracking โ
โ โข Priority-based workflow (P0/P1/P2) โ
โ โข Knowledge queries (RAG) โ
โ โข Code example search โ
โ โข Progress tracking & metrics โ
โ โข Context preservation โ
โโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โ invokes when needed
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ AI-DEV-STANDARDS SKILLS โ
โ (Tactical Layer) โ
โ โ
โ โข Domain-specific expertise โ
โ โข Implementation patterns โ
โ โข Quality standards โ
โ โข Best practices โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Key Insight: Archon manages WHAT to build and WHEN, Skills guide HOW to build it well.
Project
โโโ Feature 1
โ โโโ Task 1.1 (P0)
โ โโโ Task 1.2 (P1)
โ โโโ Task 1.3 (P2)
โโโ Feature 2
โ โโโ Task 2.1 (P0)
โ โโโ Task 2.2 (P1)
โโโ Knowledge Base
โโโ Web pages
โโโ PDFs
โโโ Code examples
โโโ Documentation
Goal: Install and configure Archon for your project
# Required
- Docker Desktop (running)
- Node.js 18+
- Supabase account (cloud: https://supabase.com or local)
- LLM API key (OpenAI, Gemini, or Ollama)
# Clone Archon
git clone https://github.com/coleam00/Archon.git
cd Archon
# Create .env file
cp .env.example .env
# Edit .env with your credentials
SUPABASE_URL=your-supabase-url
SUPABASE_ANON_KEY=your-anon-key
SUPABASE_SERVICE_ROLE_KEY=your-service-role-key
OPENAI_API_KEY=your-openai-key # or GEMINI_API_KEY, OLLAMA_URL
# Set up database (run SQL migrations in Supabase SQL Editor)
# See: database/migrations/
# Start Archon
docker compose up --build -d
# Verify running
# Frontend: http://localhost:3737
# API: http://localhost:8181
# MCP: http://localhost:8051
For Claude Code (.claude/mcp-settings.json):
{
"mcpServers": {
"archon": {
"command": "node",
"args": ["/path/to/archon/mcp-server/dist/index.js"],
"env": {
"ARCHON_API_URL": "http://localhost:8181"
}
}
}
}
For Cursor/Windsurf: Similar MCP configuration in settings
// Test Archon connection
archon: list_projects()
// Should return empty list or existing projects
Goal: Set up hierarchical project structure
// Using Archon MCP tool
archon: create_project({
name: 'My Application',
description: 'Full-stack web application for task management',
status: 'active',
metadata: {
tech_stack: ['Next.js', 'Supabase', 'TypeScript'],
team_size: 1,
target_launch: '2025-12-01'
}
})
// Returns: { project_id: "uuid", name: "My Application", ... }
// Create major features
archon: create_feature({
project_id: 'uuid',
name: 'User Authentication',
description: 'Complete auth system with email/OAuth',
priority: 'P0',
estimated_effort: '2 days'
})
archon: create_feature({
project_id: 'uuid',
name: 'Task Management',
description: 'CRUD operations for tasks',
priority: 'P0',
estimated_effort: '3 days'
})
archon: create_feature({
project_id: 'uuid',
name: 'Team Collaboration',
description: 'Share tasks with team members',
priority: 'P1',
estimated_effort: '4 days'
})
// Use AI-assisted task generation
archon: generate_tasks({
feature_id: 'auth-feature-uuid',
instructions: 'Break down authentication into implementation tasks',
use_ai: true
})
// Or create manually
archon: create_task({
feature_id: 'auth-feature-uuid',
title: 'Implement email/password signup',
description: 'Create signup form, API endpoint, database schema',
priority: 'P0',
status: 'todo',
estimated_hours: 4,
skills_to_use: ['api-designer', 'security-engineer', 'frontend-builder']
})
Goal: Build comprehensive knowledge base for AI queries
// Crawl entire documentation site
archon: crawl_website({
url: 'https://nextjs.org/docs',
max_depth: 3,
follow_sitemap: true,
tags: ['nextjs', 'documentation']
})
// Archon automatically:
// - Detects sitemap
// - Crawls pages
// - Extracts text
// - Chunks intelligently
// - Generates embeddings
// - Stores in vector database
// Upload PDFs (design docs, specs, research papers)
archon: add_document({
file_path: '/path/to/architecture-spec.pdf',
type: 'pdf',
tags: ['architecture', 'design'],
project_id: 'uuid'
})
// Archon automatically:
// - Extracts text from PDF
// - Chunks by sections/pages
// - Generates embeddings
// - Indexes for search
// Extract code examples from repos or docs
archon: extract_code_examples({
source_url: 'https://github.com/vercel/next.js/tree/canary/examples',
tags: ['nextjs', 'examples'],
language_filter: ['typescript', 'javascript']
})
// Tag and categorize
archon: update_source({
source_id: 'uuid',
tags: ['authentication', 'security', 'best-practices'],
category: 'implementation-guides',
version: '1.0'
})
Goal: Use two-layer architecture for optimal development
Goal: Understand WHAT to build and WHY
// 1. Get next priority task
const task = archon:get_next_task({
project_id: "uuid",
filter_by: "status",
filter_value: "todo",
sort_by: "priority" // P0 first
})
// โ { id: "P0-3", title: "Implement User Authentication", priority: "P0" }
// 2. Get task details
const details = archon:get_task({
task_id: "P0-3"
})
// โ Complete task info: description, requirements, dependencies
// 3. Research the domain (RAG query)
const research = archon:perform_rag_query({
query: "JWT authentication Next.js best practices",
project_id: "uuid",
match_count: 5
})
// โ Top 5 most relevant knowledge base entries with context
// 4. Find code examples
const examples = archon:search_code_examples({
query: "auth middleware Next.js TypeScript",
match_count: 3
})
// โ Relevant code examples from knowledge base
// 5. Mark as doing
archon:update_task({
task_id: "P0-3",
updates: { status: "doing" }
})
Goal: Implement with domain expertise and best practices
// 6. Identify required skills (from task.skills_to_use)
// โ ["api-designer", "security-engineer", "frontend-builder"]
// 7. Invoke skills for guidance
// (AI assistant automatically invokes these skills based on context)
// 8. Implement following both:
// - Archon research (RAG results + code examples)
// - Skill guidance (best practices + patterns)
// 9. Build the feature
Goal: Ensure quality before marking complete
// 10. Apply quality checks
// - Invoke testing-strategist skill
// - Invoke security-engineer skill
// - Run tests, validate security
// 11. Update task to review
archon:update_task({
task_id: "P0-3",
updates: { status: "review" }
})
// 12. After user validation โ mark done
archon:update_task({
task_id: "P0-3",
updates: { status: "done" }
})
// 13. Get next task
const nextTask = archon:get_next_task({
project_id: "uuid",
filter_by: "status",
filter_value: "todo"
})
// โ Repeat cycle
Goal: Leverage Archon's RAG capabilities
// Broad research query
archon: perform_rag_query({
query: 'How to implement real-time features in Next.js',
match_count: 10,
similarity_threshold: 0.7
})
// Specific technical query
archon: perform_rag_query({
query: 'Next.js middleware authentication example code',
match_count: 3,
filter_tags: ['nextjs', 'authentication', 'code-example']
})
// Architecture decision query
archon: perform_rag_query({
query: 'PostgreSQL vs MongoDB for user data',
match_count: 5,
filter_tags: ['database', 'architecture']
})
// Query within project context
archon: perform_rag_query({
query: 'How should we structure our authentication?',
project_id: 'uuid', // Uses project's knowledge base
match_count: 5
})
// Query specific feature context
archon: perform_rag_query({
query: 'Best practices for this feature',
feature_id: 'auth-feature-uuid',
match_count: 3
})
// Version project documentation
archon: create_doc_version({
project_id: 'uuid',
document_name: 'Architecture Decision Record',
content: '...',
version: '1.0.0',
tags: ['architecture', 'decisions']
})
// Query historical context
archon: get_doc_history({
project_id: 'uuid',
document_name: 'Architecture Decision Record'
})
Goal: Monitor project health and velocity
// Get project overview
archon: get_project_metrics({
project_id: 'uuid'
})
// Returns:
// {
// total_features: 5,
// total_tasks: 23,
// p0_tasks: 8,
// p1_tasks: 10,
// p2_tasks: 5,
// tasks_by_status: {
// todo: 15,
// doing: 3,
// review: 2,
// done: 3
// },
// completion_percentage: 13,
// knowledge_base_entries: 147
// }
// Tasks completed per week
archon: get_velocity({
project_id: 'uuid',
time_period: 'week'
})
// Burndown chart data
archon: get_burndown({
project_id: 'uuid',
sprint_id: 'sprint-1'
})
Archon uses Socket.IO for real-time progress updates:
// Morning routine
const nextTask = archon:get_next_task({ project_id: "uuid" })
const research = archon:perform_rag_query({
query: nextTask.title + " implementation",
match_count: 5
})
// Work on task (using Skills for implementation)
// ...
// End of day
archon:update_task({ task_id: nextTask.id, status: "review" })
// Team lead creates project structure
archon: create_project({ name: 'Team Project' })
archon: create_feature({ name: 'Backend API', assigned_to: 'developer-1' })
archon: create_feature({ name: 'Frontend UI', assigned_to: 'developer-2' })
// Each team member queries same knowledge base
archon: perform_rag_query({ query: '...', project_id: 'uuid' })
// Real-time sync of task status across team
// Claude Code for implementation
// Cursor for refactoring
// Windsurf for testing
// All connected to same Archon instance
// Same project, same tasks, same knowledge base
// Coordinated through Archon's unified context
// Projects
archon: create_project({ name, description, status, metadata })
archon: list_projects()
archon: get_project({ project_id })
archon: update_project({ project_id, updates })
archon: delete_project({ project_id })
// Features
archon: create_feature({ project_id, name, description, priority })
archon: list_features({ project_id })
archon: update_feature({ feature_id, updates })
// Tasks
archon: create_task({ feature_id, title, description, priority, status })
archon: get_next_task({ project_id, filter_by, sort_by })
archon: get_task({ task_id })
archon: update_task({ task_id, updates })
archon: list_tasks({ project_id, filter_by, filter_value })
archon: generate_tasks({ feature_id, instructions, use_ai })
// RAG Queries
archon:perform_rag_query({query, project_id?, match_count, similarity_threshold, filter_tags?})
archon:search_code_examples({query, match_count, language_filter?})
// Content Ingestion
archon:crawl_website({url, max_depth, follow_sitemap, tags})
archon:add_document({file_path, type, tags, project_id})
archon:extract_code_examples({source_url, tags, language_filter})
// Knowledge Base Management
archon:list_sources({project_id, filter_tags?})
archon:update_source({source_id, tags, category, version})
archon:delete_source({source_id})
archon: get_project_metrics({ project_id })
archon: get_velocity({ project_id, time_period })
archon: get_burndown({ project_id, sprint_id })
// Good: Hierarchical and organized
Project: "E-commerce Platform"
โโโ Feature: "User Authentication" (P0)
โ โโโ Task: "Implement signup" (P0)
โ โโโ Task: "Implement login" (P0)
โ โโโ Task: "Password reset" (P1)
โโโ Feature: "Product Catalog" (P0)
โ โโโ Task: "Product CRUD API" (P0)
โ โโโ Task: "Product listing UI" (P0)
โ โโโ Task: "Search functionality" (P1)
// Bad: Flat, disorganized
- Task: "Build everything"
- Task: "Make it work"
- Task: "Deploy"
P0 (Critical): Must have for MVP, blocks everything
P1 (High Value): Important, high impact
P2 (Nice to Have): Can wait
// Add diverse sources
archon: crawl_website({ url: 'https://docs.framework.com' })
archon: add_document({ file_path: 'architecture-spec.pdf' })
archon: extract_code_examples({ source_url: 'https://github.com/...' })
// Tag consistently
tags: ['category', 'technology', 'type']
// e.g., ["authentication", "nextjs", "tutorial"]
// Before starting task
const research = archon:perform_rag_query({
query: "How to implement " + task.title,
match_count: 5
})
// During implementation (specific questions)
const answer = archon:perform_rag_query({
query: "How to handle edge case X",
match_count: 3
})
// Architecture decisions
const guidance = archon:perform_rag_query({
query: "Should I use pattern A or pattern B for ...",
match_count: 5
})
todo โ doing โ review โ done
Update status immediately when changing.
Symptoms: MCP tools not available in AI assistant
Solutions:
docker ps.claude/mcp-settings.jsondocker logs archon-apiSymptoms: Empty results from perform_rag_query
Solutions:
archon:list_sources()similarity_threshold (default 0.7, try 0.5)filter_tagsSymptoms: get_next_task returns empty
Solutions:
archon:list_projects()Symptoms: RAG queries or task operations slow
Solutions:
match_count appropriately (5-10, not 100)Archon provides (Strategic):
Skills provide (Tactical):
Example Workflow:
// 1. Strategic (Archon)
const task = archon:get_next_task({project_id: "uuid"})
const research = archon:perform_rag_query({query: task.title})
archon:update_task({task_id: task.id, status: "doing"})
// 2. Tactical (Skills)
// AI automatically invokes: api-designer, security-engineer, frontend-builder
// Based on task.skills_to_use
// 3. Implementation
// Build following: Archon research + Skill guidance
// 4. Quality (Skills)
// AI invokes: testing-strategist, security-engineer
// 5. Complete (Archon)
archon:update_task({task_id: task.id, status: "done"})
When creating tasks in Archon, specify skills_to_use:
archon: create_task({
title: 'Implement authentication API',
skills_to_use: ['api-designer', 'security-engineer']
// ...
})
This tells AI assistants which skills to invoke during implementation.
You're using Archon effectively when:
get_next_task guides daily work// Daily workflow
archon: get_next_task({ project_id })
archon: perform_rag_query({ query, match_count: 5 })
archon: update_task({ task_id, status: 'doing' })
// ... work ...
archon: update_task({ task_id, status: 'done' })
// Project setup
archon: create_project({ name, description })
archon: create_feature({ project_id, name, priority: 'P0' })
archon: create_task({ feature_id, title, priority: 'P0' })
// Knowledge building
archon: crawl_website({ url, tags })
archon: add_document({ file_path, tags })
// Progress tracking
archon: get_project_metrics({ project_id })
archon: list_tasks({ project_id, filter_by: 'status', filter_value: 'done' })
todo โ doing (working) โ review (validate) โ done (complete)
Archon is the strategic command center that:
Combined with Skills (HOW to build well), Archon enables:
Key Takeaway: Use Archon for strategic planning (WHAT/WHEN), invoke Skills for implementation guidance (HOW). Together they create optimal outcomes.
For detailed integration patterns: See DOCS/ARCHON-INTEGRATION.md
For complete example: See EXAMPLES/archon-workflow-example.md