// AI-powered enterprise Claude Code hooks orchestrator with intelligent
| name | moai-cc-hooks |
| version | 4.0.0 |
| created | "2025-11-11T00:00:00.000Z" |
| updated | 2025-11-18 |
| status | stable |
| description | AI-powered enterprise Claude Code hooks orchestrator with intelligent automation, predictive maintenance, ML-based optimization, and Context7-enhanced workflow patterns. Use when designing smart hook systems, implementing AI-driven automation, optimizing hook performance with machine learning, or building enterprise-grade workflow orchestration with automated compliance and monitoring. |
| keywords | ["ai-claude-code-hooks","enterprise-automation","predictive-maintenance","ml-optimization","context7-workflows","intelligent-orchestration","automated-monitoring","smart-hooks","enterprise-workflows"] |
| allowed-tools | ["Read","Write","Edit","Bash","Glob","mcp__context7__resolve-library-id","mcp__context7__get-library-docs"] |
| stability | stable |
| Field | Value |
|---|---|
| Skill Name | moai-cc-hooks |
| Version | 4.0.0 Enterprise (2025-11-11) |
| Status | Active |
| Tier | Essential AI-Powered Operations |
| AI Integration | โ Context7 MCP, ML Automation, Predictive Analytics |
| Auto-load | Proactively for intelligent hook system design |
| Purpose | Smart workflow orchestration with AI automation |
AI Automatic Triggers:
Manual AI Invocation:
class AIHookArchitect:
"""AI-powered Claude Code hook architecture with Context7 integration."""
async def design_hook_system_with_ai(self, requirements: HookRequirements) -> AIHookArchitecture:
"""Design hook system using AI and Context7 patterns."""
# Get latest hook patterns from Context7
hook_standards = await self.context7.get_library_docs(
context7_library_id="/anthropic/claude-code/hooks",
topic="AI hook architecture optimization workflow patterns 2025",
tokens=5000
)
# AI hook pattern classification
hook_type = self.classify_hook_system_type(requirements)
workflow_patterns = self.match_known_workflow_patterns(hook_type, requirements)
# Context7-enhanced performance analysis
performance_insights = self.extract_context7_performance_patterns(
hook_type, hook_standards
)
return AIHookArchitecture(
hook_system_type=hook_type,
workflow_design=self.design_intelligent_workflows(hook_type, requirements),
performance_optimization=self.optimize_hook_performance(
workflow_patterns, performance_insights
),
context7_recommendations=performance_insights['recommendations'],
ai_confidence_score=self.calculate_hook_confidence(
requirements, workflow_patterns, performance_insights
)
)
class Context7WorkflowDesigner:
"""Context7-enhanced workflow design with AI coordination."""
async def design_workflows_with_ai(self,
workflow_requirements: WorkflowRequirements) -> AIWorkflowSuite:
"""Design AI-optimized workflows using Context7 patterns."""
# Get Context7 workflow patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/anthropic/claude-code/hooks",
topic="AI workflow automation enterprise integration patterns",
tokens=4000
)
# Apply Context7 workflow optimization
workflow_optimization = self.apply_context7_workflow_optimization(
context7_patterns['workflow_design']
)
# AI-enhanced workflow coordination
ai_coordination = self.ai_workflow_optimizer.optimize_workflow_coordination(
workflow_requirements, context7_patterns['coordination_patterns']
)
return AIWorkflowSuite(
workflow_optimization=workflow_optimization,
ai_coordination=ai_coordination,
context7_patterns=context7_patterns,
intelligent_monitoring=self.setup_intelligent_workflow_monitoring()
)
{
"ai_enterprise_hooks": {
"version": "4.0.0",
"ai_orchestration": true,
"predictive_optimization": true,
"context7_integration": true,
"automated_monitoring": true,
"hooks": {
"ai_enhanced_pre_tools": [
{
"matcher": "Bash",
"hooks": [
{
"type": "ai_security_validator",
"command": "python ~/.claude/ai_hooks/ai_bash_security_validator.py",
"ai_features": {
"ml_threat_detection": true,
"behavioral_analysis": true,
"context7_compliance": true,
"predictive_blocking": true
},
"performance_optimization": {
"sub_100ms_execution": true,
"parallel_processing": true,
"intelligent_caching": true
}
}
]
},
{
"matcher": "Edit|Write",
"hooks": [
{
"type": "ai_code_analyzer",
"command": "python ~/.claude/ai_hooks/ai_code_quality_analyzer.py",
"ai_features": {
"code_pattern_recognition": true,
"security_vulnerability_detection": true,
"performance_impact_analysis": true,
"context7_best_practices": true
},
"optimization": {
"real_time_analysis": true,
"ml_model_inference": true,
"continuous_learning": true
}
}
]
}
],
"ai_enhanced_post_tools": [
{
"matcher": "Edit",
"hooks": [
{
"type": "ai_auto_optimizer",
"command": "python ~/.claude/ai_hooks/ai_auto_optimizer.py",
"ai_capabilities": {
"intelligent_formatting": true,
"performance_optimization": true,
"security_hardening": true,
"context7_standards_compliance": true
},
"ml_features": {
"pattern_learning": true,
"user_preference_adaptation": true,
"project_specific_optimization": true
}
}
]
},
{
"matcher": "Bash",
"hooks": [
{
"type": "ai_performance_monitor",
"command": "python ~/.claude/ai_hooks/ai_performance_monitor.py",
"monitoring_features": {
"real_time_performance_tracking": true,
"anomaly_detection": true,
"predictive_maintenance_alerts": true,
"context7_benchmarking": true
}
}
]
}
],
"ai_enhanced_session_management": [
{
"matcher": "*",
"hooks": [
{
"type": "ai_session_orchestrator",
"command": "python ~/.claude/ai_hooks/ai_session_orchestrator.py",
"orchestration_features": {
"intelligent_context_management": true,
"predictive_resource_allocation": true,
"automated_workflow_optimization": true,
"context7_pattern_application": true
}
}
]
}
]
},
"ai_performance_monitoring": {
"enabled": true,
"ml_optimization": true,
"predictive_analysis": true,
"context7_benchmarks": true,
"real_time_tuning": true,
"continuous_learning": true
},
"context7_integration": {
"live_pattern_updates": true,
"automated_best_practice_application": true,
"community_knowledge_integration": true,
"standards_compliance_monitoring": true
}
}
}
class AIHookOptimizer:
"""AI-powered hook performance optimization with Context7 integration."""
async def optimize_hooks_with_ai(self,
hook_metrics: HookMetrics) -> AIHookOptimization:
"""Optimize hooks using AI and Context7 patterns."""
# Get Context7 hook optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/anthropic/claude-code/hooks",
topic="AI hook performance optimization automation patterns",
tokens=4000
)
# Multi-layer AI performance analysis
performance_analysis = await self.analyze_hook_performance_with_ai(
hook_metrics, context7_patterns
)
# Context7-enhanced optimization strategies
optimization_strategies = self.generate_optimization_strategies(
performance_analysis, context7_patterns
)
return AIHookOptimization(
performance_analysis=performance_analysis,
optimization_strategies=optimization_strategies,
context7_solutions=context7_patterns,
continuous_improvement=self.setup_continuous_hook_learning()
)
class AIPredictiveHookMaintainer:
"""AI-enhanced predictive maintenance for hook systems."""
async def predict_hook_maintenance_needs(self,
system_data: SystemData) -> AIPredictiveMaintenance:
"""Predict hook maintenance needs using AI analysis."""
# Get Context7 maintenance patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/anthropic/claude-code/hooks",
topic="AI predictive maintenance hook optimization patterns",
tokens=4000
)
# AI predictive analysis
predictive_analysis = self.ai_predictor.analyze_maintenance_needs(
system_data, context7_patterns
)
# Context7-enhanced maintenance strategies
maintenance_strategies = self.generate_maintenance_strategies(
predictive_analysis, context7_patterns
)
return AIPredictiveMaintenance(
predictive_analysis=predictive_analysis,
maintenance_strategies=maintenance_strategies,
context7_patterns=context7_patterns,
automated_scheduling=self.setup_automated_maintenance()
)
class AIHookIntelligenceDashboard:
"""Real-time AI hook intelligence with Context7 integration."""
async def generate_hook_intelligence_report(
self, hook_metrics: List[HookMetric]) -> HookIntelligenceReport:
"""Generate AI hook intelligence report."""
# Get Context7 hook intelligence patterns
context7_intelligence = await self.context7.get_library_docs(
context7_library_id="/anthropic/claude-code/hooks",
topic="AI hook intelligence monitoring optimization patterns",
tokens=4000
)
# AI analysis of hook performance
ai_intelligence = self.ai_analyzer.analyze_hook_metrics(hook_metrics)
# Context7-enhanced recommendations
enhanced_recommendations = self.enhance_with_context7(
ai_intelligence, context7_intelligence
)
return HookIntelligenceReport(
current_analysis=ai_intelligence,
context7_insights=context7_intelligence,
enhanced_recommendations=enhanced_recommendations,
optimization_roadmap=self.generate_hook_optimization_roadmap(
ai_intelligence, enhanced_recommendations
)
)
async def design_ai_hook_system_with_context7():
"""Design AI hook system using Context7 patterns."""
# Get Context7 AI hook patterns
hook_patterns = await context7.get_library_docs(
context7_library_id="/anthropic/claude-code/hooks",
topic="AI enterprise hook system automation optimization 2025",
tokens=6000
)
# Apply Context7 AI hook workflow
hook_workflow = apply_context7_workflow(
hook_patterns['ai_hook_workflow'],
system_type=['enterprise', 'high-performance', 'compliance-driven']
)
# AI coordination for hook deployment
ai_coordinator = AIHookCoordinator(hook_workflow)
# Execute coordinated AI hook design
result = await ai_coordinator.coordinate_enterprise_hook_system()
return result
async def implement_ai_hook_performance(hook_requirements):
"""Implement AI-driven hook performance with Context7 integration."""
# Get Context7 performance patterns
performance_patterns = await context7.get_library_docs(
context7_library_id="/anthropic/claude-code/hooks",
topic="AI hook performance optimization monitoring patterns",
tokens=5000
)
# AI performance analysis
ai_analysis = ai_performance_analyzer.analyze_requirements(
hook_requirements, performance_patterns
)
# Context7 pattern matching
performance_matches = match_context7_performance_patterns(ai_analysis, performance_patterns)
return {
'ai_hook_performance': generate_ai_performance_hooks(ai_analysis, performance_matches),
'context7_optimization': performance_matches,
'implementation_strategy': implement_performance_hooks(performance_matches)
}
ai_hook_stage:
- name: AI Hook System Design
uses: moai-cc-hooks
with:
context7_integration: true
ai_automation: true
predictive_optimization: true
enterprise_workflows: true
- name: Context7 Hook Validation
uses: moai-context7-integration
with:
validate_hook_standards: true
apply_workflow_patterns: true
performance_optimization: true
class AIHookLearner:
"""Continuous learning for AI hook capabilities."""
async def learn_from_hook_project(self, project: HookProject) -> HookLearningResult:
# Extract learning patterns from successful hook implementations
successful_patterns = self.extract_success_patterns(project)
# Update AI model with new patterns
model_update = self.update_ai_hook_model(successful_patterns)
# Validate with Context7 patterns
context7_validation = await self.validate_with_context7(model_update)
return HookLearningResult(
patterns_learned=successful_patterns,
model_improvement=model_update,
context7_validation=context7_validation,
quality_improvement=self.calculate_hook_improvement(model_update)
)
moai-cc-configuration: Hook system configurationmoai-essentials-debug: Hook debugging and optimizationmoai-essentials-perf: Hook performance tuningmoai-foundation-trust: Hook security and compliance.moai/config.json conversation_language**End of AI-Powered Enterprise Claude Code Hooks Orchestrator **
Enhanced with Context7 integration and revolutionary AI automation capabilities
moai-cc-configuration (AI hook configuration)moai-essentials-debug (AI hook debugging)moai-essentials-perf (AI hook performance optimization)moai-foundation-trust (AI hook security and compliance)moai-context7-integration (latest hook standards and patterns)