| name | backend-development |
| description | Master backend API development with Node.js, Python, PHP, Java, C#, GraphQL, REST APIs, databases, and microservices. Learn server-side architecture, authentication, scalability, and production deployment. |
Backend Development & API Skills
Quick Start
Backend development creates the server-side logic and APIs that power applications. Start with your language choice and understand HTTP fundamentals.
Node.js/Express API
const express = require('express');
const app = express();
app.use(express.json());
app.get('/api/users/:id', async (req, res) => {
try {
const user = await getUser(req.params.id);
res.json(user);
} catch (error) {
res.status(500).json({ error: error.message });
}
});
app.listen(3000, () => console.log('Server running on :3000'));
Python/FastAPI
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class User(BaseModel):
id: int
name: str
email: str
@app.get("/api/users/{user_id}")
async def get_user(user_id: int):
user = await fetch_user(user_id)
return user
@app.post("/api/users")
async def create_user(user: User):
return await save_user(user)
GraphQL Schema
type User {
id: ID!
name: String!
email: String!
posts: [Post!]!
}
type Query {
user(id: ID!): User
users: [User!]!
}
type Mutation {
createUser(name: String!, email: String!): User
deleteUser(id: ID!): Boolean
}
Core Topics
1. Language Fundamentals
- Node.js: JavaScript async/await, modules, package management
- Python: Async frameworks, type hints, virtual environments
- PHP: Object-oriented PHP, Laravel framework
- Java: Spring Boot, dependency injection, build tools
- C#: .NET Core, async patterns, LINQ
2. HTTP & REST Principles
- HTTP methods (GET, POST, PUT, DELETE, PATCH)
- Status codes (2xx, 3xx, 4xx, 5xx)
- RESTful API design patterns
- API versioning strategies
- Pagination, filtering, sorting
3. Database Integration
- SQL: Joins, aggregations, optimization
- ORMs: Prisma, SQLAlchemy, Hibernate, Entity Framework
- Database Selection: PostgreSQL vs. MongoDB
- Connection Pooling: Performance optimization
- Migrations: Schema version control
4. Authentication & Authorization
- JWT (JSON Web Tokens): Stateless authentication
- OAuth 2.0: Third-party authentication
- Session Management: Cookie-based authentication
- Role-Based Access Control (RBAC): Permission management
- API Keys: Simple authentication
5. Input Validation & Error Handling
- Request validation schemas
- Sanitization and data cleaning
- Meaningful error responses
- Exception handling patterns
- Security (CSRF, injection prevention)
6. Middleware & Request Pipeline
- Logging and monitoring
- CORS (Cross-Origin Resource Sharing)
- Rate limiting and throttling
- Compression and response optimization
- Request/response transformation
7. Web Frameworks
- Node.js: Express, Fastify, NestJS
- Python: Django, FastAPI, Flask
- PHP: Laravel, Symfony
- Java: Spring Boot, Quarkus
- C#: ASP.NET Core, Blazor
8. GraphQL
- Schema Definition: Types, queries, mutations
- Resolvers: Data fetching and computation
- Subscriptions: Real-time updates
- Federation: Microservices with GraphQL
- DataLoader: N+1 query prevention
9. Scalability & Performance
- Caching: Redis, Memcached strategies
- Database Optimization: Indexing, query analysis
- Load Balancing: Distributing traffic
- Async Processing: Background jobs, message queues
- Horizontal Scaling: Stateless design
10. Deployment & DevOps
- Docker: Containerization
- Kubernetes: Orchestration basics
- CI/CD: Automated testing and deployment
- Monitoring: Logging, metrics, APM
- Cloud Platforms: AWS, GCP, Azure
Learning Path
Month 1-2: Foundations
- Choose programming language
- HTTP and REST principles
- Basic CRUD API development
- SQL fundamentals
Month 3-4: Intermediate
- Framework mastery (Express, Django, FastAPI, Laravel)
- Database design and ORMs
- Authentication and authorization
- API design best practices
Month 5-6: Advanced
- GraphQL implementation
- Microservices architecture
- Caching and performance optimization
- Testing and CI/CD
Month 7+: Professional
- System design and scalability
- Cloud deployment and monitoring
- Event-driven architecture
- Team leadership
Tools & Technologies
Languages & Frameworks
- Node.js: Express, Fastify, NestJS, Hapi
- Python: Django, FastAPI, Flask, Starlette
- PHP: Laravel, Symfony, Slim
- Java: Spring Boot, Quarkus, Micronaut
- Go: Gin, Echo, Standard Library
- C#: ASP.NET Core, minimal APIs
Databases
- SQL: PostgreSQL, MySQL, MariaDB
- NoSQL: MongoDB, Redis, DynamoDB
- Tools: DBeaver, pgAdmin, MongoDB Compass
API Development
- API Testing: Postman, Insomnia, REST Client
- Documentation: Swagger/OpenAPI, GraphQL IDL
- Monitoring: Sentry, DataDog, New Relic
Deployment
- Containerization: Docker, Docker Compose
- Orchestration: Kubernetes, Docker Swarm
- CI/CD: GitHub Actions, Jenkins, GitLab CI
- Cloud: AWS, GCP, Azure, Heroku
Development Tools
- Editors: VS Code, IntelliJ, JetBrains IDEs
- Version Control: Git, GitHub, GitLab
- Package Managers: npm, pip, Composer, Maven
Advanced Topics
Microservices Architecture
- Service Boundary: Identifying bounded contexts (Domain-Driven Design)
- Service Communication: Synchronous (REST, gRPC, HTTP/2) vs. Asynchronous (message queues)
- API Versioning: URL versioning, header versioning, content negotiation
- Service Discovery: Consul, Eureka, DNS-based discovery
- Inter-service Communication: Timeout handling, circuit breakers, retries
- Data Consistency: Saga pattern, event sourcing, eventual consistency
- Distributed Tracing: OpenTelemetry, Jaeger for debugging distributed systems
- Service Mesh: Istio, Linkerd for managing service communication
Message Queue & Asynchronous Processing
- Message Brokers: RabbitMQ, Apache Kafka, AWS SQS
- Publishing/Subscribing: Pub/Sub pattern for decoupled services
- Job Queues: Celery (Python), Bull (Node.js), Delayed Job (Ruby)
- Idempotency: Preventing duplicate processing
- Dead Letter Queues: Handling failed message retries
- Event Sourcing: Storing events instead of state
- CQRS (Command Query Responsibility Segregation): Separating reads and writes
Advanced Authentication & Authorization
- OAuth 2.0 Flows: Authorization Code, Client Credentials, PKCE
- OpenID Connect: Identity layer on top of OAuth 2.0
- Passwordless Auth: WebAuthn, Magic links, Biometrics
- Multi-Factor Authentication (MFA): TOTP, SMS, push notifications
- SAML: Enterprise SSO authentication
- Token Refresh: Handling token expiration and refresh strategies
- API Rate Limiting: Per-user, per-endpoint, sliding window algorithms
Caching Strategies
- HTTP Caching: ETag, Cache-Control, Last-Modified headers
- Application Caching: In-memory caches (Redis, Memcached)
- Database Query Caching: Query result caching, cache invalidation
- Cache Patterns: Cache-aside, write-through, write-behind
- Cache Stampede: When multiple requests request expired cache
- Distributed Caching: Cache coherence across multiple servers
- Cache Warming: Pre-loading frequently accessed data
Database Patterns & Optimization
- Connection Pooling: Preventing resource exhaustion
- Database Partitioning: Sharding, horizontal partitioning
- Read Replicas: Scaling read-heavy workloads
- Query Optimization: EXPLAIN plans, index strategies
- N+1 Query Prevention: Batch loading, DataLoader pattern
- Transaction Management: ACID guarantees, isolation levels
- CDC (Change Data Capture): Capturing database changes
API Design Patterns
- Pagination: Offset-based, cursor-based, keyset pagination
- Filtering: Multiple filter syntax (query params vs. GraphQL)
- Sorting: Multi-field sorting, default sort orders
- Sparse Fieldsets: Allowing clients to request specific fields
- Content Negotiation: Supporting multiple response formats (JSON, XML, etc.)
- HATEOAS: Hypermedia-driven APIs (advanced REST)
- API Throttling: Rate limiting per client
- Backwards Compatibility: API versioning strategies
Testing at Scale
- Unit Testing: Fast, isolated tests (Jest, pytest, unittest)
- Integration Testing: Testing with databases and external services
- Contract Testing: API contract testing between services
- Load Testing: Apache JMeter, Locust, k6
- Chaos Engineering: Simulating failures to test resilience
- Mutation Testing: Verifying test suite quality
- Property-Based Testing: QuickCheck, Hypothesis
Security at Scale
- Input Validation: Schema validation, sanitization
- SQL Injection Prevention: Prepared statements, parameterized queries
- OWASP Top 10: Understanding and preventing common vulnerabilities
- Secrets Management: Vault, AWS Secrets Manager
- API Security: API keys, OAuth, mutual TLS
- HTTPS/TLS: Certificate management, TLS versions
- CORS Security: Origin validation, credential handling
- Dependency Management: Scanning for vulnerable dependencies (Snyk, npm audit)
Observability & Monitoring
- Structured Logging: JSON logs with context, log levels
- Metrics: Application metrics (response time, error rate, throughput)
- Tracing: Distributed tracing with correlation IDs
- Health Checks: Liveness and readiness probes
- Alerting: Setting up meaningful alerts, alerting fatigue
- APM Tools: DataDog, New Relic, Dynatrace
- Log Aggregation: ELK Stack, Splunk, CloudWatch
Deployment & DevOps
- Blue-Green Deployment: Zero-downtime deployments
- Canary Releases: Gradual rollout to users
- Feature Flags: Enabling/disabling features at runtime
- Database Migrations: Handling schema changes safely
- Rollback Strategies: Quick rollback to previous version
- Environment Management: Dev, staging, production consistency
- Infrastructure as Code: Terraform, CloudFormation, Pulumi
Common Pitfalls & Gotchas
-
N+1 Query Problem: Fetching related data in a loop
SELECT * FROM users WHERE id = 1;
SELECT * FROM posts WHERE user_id = 1;
SELECT u.*, p.* FROM users u
LEFT JOIN posts p ON u.id = p.user_id WHERE u.id = 1;
-
Unbounded Query Results: Returning millions of records
- Fix: Implement pagination with reasonable limits
- Example:
LIMIT 100 OFFSET offset
-
Missing Error Handling: Silent failures or generic error messages
- Fix: Meaningful error messages, proper HTTP status codes
- Example: 400 for validation error, 409 for conflict, 500 for server error
-
Blocking Operations: Synchronous operations that take time
- Fix: Use async/await, background jobs, message queues
- Example: Process file upload asynchronously
-
Stateful Service Design: Assuming server state across requests
- Fix: Design stateless services for horizontal scaling
- Example: Store session in Redis, not in-memory
-
Missing Connection Pooling: Creating new DB connections per request
- Fix: Use connection pools (HikariCP, pgBouncer)
- Impact: 10-100x performance improvement
-
Inadequate Validation: Trusting client input
- Fix: Validate on server-side, use schema validation
- Example: zod, joi, Pydantic for data validation
-
Hardcoded Configuration: API keys, passwords in code
- Fix: Use environment variables, secrets manager
- Example:
process.env.DATABASE_URL, AWS Secrets Manager
-
Missing Audit Logging: No record of what happened
- Fix: Log all sensitive operations (login, payment, deletion)
- Example: User ID, timestamp, action, IP address, result
-
Slow Database Queries: Unoptimized queries impacting user experience
- Fix: Use EXPLAIN ANALYZE, add indexes, denormalize if needed
- Benchmark: Every query should complete in < 100ms
Production Deployment Checklist
Best Practices
- RESTful Design - Clear resources, proper HTTP methods, status codes
- Security First - Input validation, authentication, encryption, OWASP compliance
- Error Handling - Meaningful messages, proper status codes, error tracking
- Performance - Caching, indexing, query optimization, async processing
- Documentation - API docs, README, code comments, examples
- Testing - Unit tests, integration tests, load tests, API tests
- Monitoring - Structured logging, metrics, tracing, alerting
- Scalability - Stateless design, horizontal scaling, database optimization
- Observability - Logs, metrics, traces, health checks
- DevOps - CI/CD, infrastructure as code, automated deployments
Architecture Patterns
Layered Architecture
api/
โโโ controllers/ # HTTP request handling
โโโ services/ # Business logic
โโโ repositories/ # Data access
โโโ models/ # Domain models
โโโ middleware/ # Authentication, logging, error handling
โโโ utils/ # Helper functions
Clean Code Architecture
src/
โโโ domain/ # Business entities, use cases
โโโ application/ # Application logic, DTOs
โโโ infrastructure/ # Database, external APIs
โโโ presentation/ # API controllers
โโโ config/ # Configuration
Performance Optimization Checklist
Testing Best Practices
describe('UserService', () => {
test('creates user with hashed password', async () => {
const user = await UserService.create({
email: 'test@example.com',
password: 'password123'
});
expect(user.email).toBe('test@example.com');
expect(user.password).not.toBe('password123');
expect(user.password).toMatch(/^\$2b\$/);
});
});
describe('UserService', () => {
test('calls bcrypt.hash', async () => {
const mockHash = jest.spyOn(bcrypt, 'hash');
await UserService.create(...);
expect(mockHash).toHaveBeenCalled();
});
});
API Design Example
GET /api/v1/users
GET /api/v1/users/:id
POST /api/v1/users
PATCH /api/v1/users/:id
DELETE /api/v1/users/:id
GET /api/v1/users?page=1&limit=20&sort=-created_at&role=admin
HTTP 400 Bad Request
{
"error": {
"code": "INVALID_EMAIL",
"message": "Invalid email format",
"details": { "field": "email" }
}
}
HTTP 200 OK
{
"data": { "id": "123", "email": "test@example.com" },
"meta": { "timestamp": "2024-01-01T00:00:00Z" }
}
Resources & Learning
Documentation
Frameworks & Tools
Learning Platforms
Keeping Up to Date
Interview Preparation
Common Backend Interview Topics
- Database Design: Normalization, indexing, query optimization
- REST API Design: Proper HTTP methods, status codes, error handling
- Authentication: JWT, OAuth 2.0, session management
- Caching: Redis, cache invalidation, caching strategies
- Scalability: Horizontal scaling, load balancing, database replication
- Monitoring: Logging, metrics, alerting
- Testing: Unit tests, integration tests, mocking
- System Design: Designing Twitter, Instagram, or similar systems
System Design Interview
- Scalability: How would you handle 1M requests/second?
- Database Selection: When to use SQL vs. NoSQL?
- Caching Strategy: What should be cached? How long?
- Load Balancing: How would you distribute traffic?
- Data Consistency: SQL consistency vs. NoSQL eventual consistency?
Next Steps
- Master your framework - Node.js/Express, Django, FastAPI, Spring Boot, ASP.NET Core
- Learn database design - Schema design, indexing, query optimization
- Study system design - Handling millions of users, distributed systems
- Implement real-world features - Authentication, caching, rate limiting, payments
- Focus on testing - Unit tests, integration tests, test coverage
- Deploy to production - Set up CI/CD, monitoring, alerting
- Learn microservices - Service communication, data consistency, distributed tracing