// Cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Enables building and training quantum circuits with automatic differentiation, seamless integration with PyTorch/JAX/TensorFlow, and device-independent execution across simulators and quantum hardware (IBM, Amazon Braket, Google, Rigetti, IonQ, etc.). Use when working with quantum circuits, variational quantum algorithms (VQE, QAOA), quantum neural networks, hybrid quantum-classical models, molecular simulations, quantum chemistry calculations, or any quantum computing tasks requiring gradient-based optimization, hardware-agnostic programming, or quantum machine learning workflows.
| name | pennylane |
| description | Cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Enables building and training quantum circuits with automatic differentiation, seamless integration with PyTorch/JAX/TensorFlow, and device-independent execution across simulators and quantum hardware (IBM, Amazon Braket, Google, Rigetti, IonQ, etc.). Use when working with quantum circuits, variational quantum algorithms (VQE, QAOA), quantum neural networks, hybrid quantum-classical models, molecular simulations, quantum chemistry calculations, or any quantum computing tasks requiring gradient-based optimization, hardware-agnostic programming, or quantum machine learning workflows. |
PennyLane is a quantum computing library that enables training quantum computers like neural networks. It provides automatic differentiation of quantum circuits, device-independent programming, and seamless integration with classical machine learning frameworks.
Install using uv:
uv pip install pennylane
For quantum hardware access, install device plugins:
# IBM Quantum
uv pip install pennylane-qiskit
# Amazon Braket
uv pip install amazon-braket-pennylane-plugin
# Google Cirq
uv pip install pennylane-cirq
# Rigetti Forest
uv pip install pennylane-rigetti
# IonQ
uv pip install pennylane-ionq
Build a quantum circuit and optimize its parameters:
import pennylane as qml
from pennylane import numpy as np
# Create device
dev = qml.device('default.qubit', wires=2)
# Define quantum circuit
@qml.qnode(dev)
def circuit(params):
qml.RX(params[0], wires=0)
qml.RY(params[1], wires=1)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
# Optimize parameters
opt = qml.GradientDescentOptimizer(stepsize=0.1)
params = np.array([0.1, 0.2], requires_grad=True)
for i in range(100):
params = opt.step(circuit, params)
Build circuits with gates, measurements, and state preparation. See references/quantum_circuits.md for:
Create hybrid quantum-classical models. See references/quantum_ml.md for:
Simulate molecules and compute ground state energies. See references/quantum_chemistry.md for:
Execute on simulators or quantum hardware. See references/devices_backends.md for:
Train quantum circuits with various optimizers. See references/optimization.md for:
Leverage templates, transforms, and compilation. See references/advanced_features.md for:
# 1. Define ansatz
@qml.qnode(dev)
def classifier(x, weights):
# Encode data
qml.AngleEmbedding(x, wires=range(4))
# Variational layers
qml.StronglyEntanglingLayers(weights, wires=range(4))
return qml.expval(qml.PauliZ(0))
# 2. Train
opt = qml.AdamOptimizer(stepsize=0.01)
weights = np.random.random((3, 4, 3)) # 3 layers, 4 wires
for epoch in range(100):
for x, y in zip(X_train, y_train):
weights = opt.step(lambda w: (classifier(x, w) - y)**2, weights)
from pennylane import qchem
# 1. Build Hamiltonian
symbols = ['H', 'H']
coords = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.74])
H, n_qubits = qchem.molecular_hamiltonian(symbols, coords)
# 2. Define ansatz
@qml.qnode(dev)
def vqe_circuit(params):
qml.BasisState(qchem.hf_state(2, n_qubits), wires=range(n_qubits))
qml.UCCSD(params, wires=range(n_qubits))
return qml.expval(H)
# 3. Optimize
opt = qml.AdamOptimizer(stepsize=0.1)
params = np.zeros(10, requires_grad=True)
for i in range(100):
params, energy = opt.step_and_cost(vqe_circuit, params)
print(f"Step {i}: Energy = {energy:.6f} Ha")
# Same circuit, different backends
circuit_def = lambda dev: qml.qnode(dev)(circuit_function)
# Test on simulator
dev_sim = qml.device('default.qubit', wires=4)
result_sim = circuit_def(dev_sim)(params)
# Run on quantum hardware
dev_hw = qml.device('qiskit.ibmq', wires=4, backend='ibmq_manila')
result_hw = circuit_def(dev_hw)(params)
For comprehensive coverage of specific topics, consult the reference files:
references/getting_started.md - Installation, basic concepts, first stepsreferences/quantum_circuits.md - Gates, measurements, circuit patternsreferences/quantum_ml.md - Hybrid models, framework integration, QNNsreferences/quantum_chemistry.md - VQE, molecular Hamiltonians, chemistry workflowsreferences/devices_backends.md - Simulators, hardware plugins, device configurationreferences/optimization.md - Optimizers, gradients, variational algorithmsreferences/advanced_features.md - Templates, transforms, JIT compilation, noisedefault.qubit before deploying to hardwareqml.specs() to analyze circuit complexity