// Master data analysis, visualization, and insights extraction.
| name | data-science-analytics |
| description | Master data analysis, visualization, and insights extraction. |
import pandas as pd
# Load data
df = pd.read_csv('data.csv')
# Explore
df.head()
df.info()
df.describe()
# Filter
df[df['age'] > 30]
# Group
df.groupby('category')['value'].sum()
# Aggregate
df.agg({'value': 'sum', 'count': 'mean'})
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x='age', y='income')
plt.title('Age vs Income')
plt.show()
✅ Ask clear questions ✅ Validate assumptions ✅ Use appropriate visualizations ✅ Test hypotheses ✅ Document methodology ✅ Avoid misleading charts ✅ Cite data sources