// AI-powered enterprise MCP (Model Context Protocol) server orchestrator with intelligent plugin management, predictive optimization, ML-based performance analysis, and Context7-enhanced integration patterns. Use when creating smart MCP systems, implementing AI-driven plugin discovery, optimizing MCP performance with machine learning, or building enterprise-grade server architecture with automated compliance and governance.
| name | moai-cc-mcp-plugins |
| version | 4.0.0 |
| created | "2025-11-11T00:00:00.000Z" |
| updated | "2025-11-11T00:00:00.000Z" |
| status | stable |
| description | AI-powered enterprise MCP (Model Context Protocol) server orchestrator with intelligent plugin management, predictive optimization, ML-based performance analysis, and Context7-enhanced integration patterns. Use when creating smart MCP systems, implementing AI-driven plugin discovery, optimizing MCP performance with machine learning, or building enterprise-grade server architecture with automated compliance and governance. |
| keywords | ["ai-mcp-servers","enterprise-plugin-management","predictive-optimization","ml-performance-analysis","context7-integration","intelligent-mcp-orchestration","automated-governance","smart-plugins","enterprise-mcp"] |
| allowed-tools | ["Read","Write","Edit","Bash","Glob","mcp__context7__resolve-library-id","mcp__context7__get-library-docs"] |
| Field | Value |
|---|---|
| Skill Name | moai-cc-mcp-plugins |
| Version | 4.0.0 Enterprise (2025-11-11) |
| Status | Active |
| Tier | Essential AI-Powered Operations |
| AI Integration | ✅ Context7 MCP, ML Server Design, Predictive Analytics |
| Auto-load | Proactively for intelligent MCP system design |
| Purpose | Smart MCP architecture with AI plugin automation |
AI Automatic Triggers:
Manual AI Invocation:
class AIMCPArchitect:
"""AI-powered MCP server architecture with Context7 integration."""
async def design_mcp_system_with_ai(self, requirements: MCPRequirements) -> AIMCPArchitecture:
"""Design MCP system using AI and Context7 patterns."""
# Get latest MCP patterns from Context7
mcp_standards = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="AI MCP server architecture optimization integration patterns 2025",
tokens=5000
)
# AI MCP pattern classification
mcp_type = self.classify_mcp_system_type(requirements)
integration_patterns = self.match_known_mcp_patterns(mcp_type, requirements)
# Context7-enhanced performance analysis
performance_insights = self.extract_context7_performance_patterns(
mcp_type, mcp_standards
)
return AIMCPArchitecture(
mcp_system_type=mcp_type,
integration_design=self.design_intelligent_mcp_workflows(mcp_type, requirements),
performance_optimization=self.optimize_mcp_performance(
integration_patterns, performance_insights
),
context7_recommendations=performance_insights['recommendations'],
ai_confidence_score=self.calculate_mcp_confidence(
requirements, integration_patterns, performance_insights
)
)
class Context7MCPDesigner:
"""Context7-enhanced MCP design with AI coordination."""
async def design_mcp_servers_with_ai(self,
mcp_requirements: MCPRequirements) -> AIMCPSuite:
"""Design AI-optimized MCP servers using Context7 patterns."""
# Get Context7 MCP patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="AI MCP server design automation enterprise patterns",
tokens=4000
)
# Apply Context7 MCP optimization
mcp_optimization = self.apply_context7_mcp_optimization(
context7_patterns['mcp_design']
)
# AI-enhanced MCP coordination
ai_coordination = self.ai_mcp_optimizer.optimize_mcp_coordination(
mcp_requirements, context7_patterns['coordination_patterns']
)
return AIMCPSuite(
mcp_optimization=mcp_optimization,
ai_coordination=ai_coordination,
context7_patterns=context7_patterns,
intelligent_discovery=self.setup_intelligent_mcp_discovery()
)
{
"ai_enterprise_mcp": {
"version": "4.0.0",
"ai_orchestration": true,
"predictive_optimization": true,
"context7_integration": true,
"automated_monitoring": true,
"mcpServers": {
"context7_ai_bridge": {
"command": "python",
"args": ["-m", "context7_ai_mcp_bridge"],
"env": {
"CONTEXT7_AI_ENABLED": "true",
"CONTEXT7_LEARNING_MODE": "continuous",
"CONTEXT7_PREDICTIVE_OPT": "true"
},
"ai_features": {
"intelligent_plugin_discovery": true,
"predictive_performance_tuning": true,
"automated_compliance_checking": true,
"context7_pattern_matching": true
}
},
"ai_github_enhanced": {
"command": "npx",
"args": ["-y", "@anthropic-ai/mcp-server-github"],
"oauth": {
"clientId": "${GITHUB_CLIENT_ID}",
"clientSecret": "${GITHUB_CLIENT_SECRET}",
"scopes": ["repo", "issues", "pull_requests", "workflows", "admin"]
},
"ai_optimization": {
"repo_analysis": true,
"pr_prediction": true,
"automated_triage": true,
"predictive_maintenance": true,
"ml_issue_classification": true
}
},
"ai_filesystem_security": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-filesystem",
"${CLAUDE_PROJECT_DIR}/.moai",
"${CLAUDE_PROJECT_DIR}/src",
"${CLAUDE_PROJECT_DIR}/tests",
"${CLAUDE_PROJECT_DIR}/docs"
],
"ai_security": {
"access_pattern_analysis": true,
"anomaly_detection": true,
"automated_quarantine": true,
"predictive_threat_assessment": true,
"ml_behavior_monitoring": true
}
},
"ai_database_optimizer": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-sqlite", "${CLAUDE_PROJECT_DIR}/data/app.db"],
"ai_optimization": {
"query_optimization": true,
"performance_tuning": true,
"predictive_indexing": true,
"automated_maintenance": true,
"ml_performance_prediction": true
}
},
"ai_search_intelligence": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
"env": {
"BRAVE_SEARCH_API_KEY": "${BRAVE_SEARCH_API_KEY}"
},
"ai_enhancement": {
"search_optimization": true,
"result_ranking": true,
"context_understanding": true,
"predictive_query_analysis": true,
"ml_search_improvement": true
}
}
},
"ai_performance_monitoring": {
"enabled": true,
"ml_optimization": true,
"predictive_analysis": true,
"context7_benchmarks": true,
"real_time_tuning": true,
"continuous_learning": true,
"automated_scaling": true
},
"context7_integration": {
"live_pattern_updates": true,
"automated_best_practice_application": true,
"community_knowledge_integration": true,
"standards_compliance_monitoring": true,
"predictive_pattern_evolution": true
},
"ai_compliance_automation": {
"enabled": true,
"context7_standards": true,
"automated_auditing": true,
"compliance_reporting": true,
"policy_enforcement": true,
"predictive_compliance_risk": true
}
}
}
class AIMCPOptimizer:
"""AI-powered MCP server optimization with Context7 integration."""
async def optimize_mcp_with_ai(self,
mcp_metrics: MCPMetrics) -> AIMCPOptimization:
"""Optimize MCP servers using AI and Context7 patterns."""
# Get Context7 MCP optimization patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="AI MCP server optimization automation patterns",
tokens=4000
)
# Multi-layer AI performance analysis
performance_analysis = await self.analyze_mcp_performance_with_ai(
mcp_metrics, context7_patterns
)
# Context7-enhanced optimization strategies
optimization_strategies = self.generate_optimization_strategies(
performance_analysis, context7_patterns
)
return AIMCPOptimization(
performance_analysis=performance_analysis,
optimization_strategies=optimization_strategies,
context7_solutions=context7_patterns,
continuous_improvement=self.setup_continuous_mcp_learning()
)
class AIPredictiveMCPMaintainer:
"""AI-enhanced predictive maintenance for MCP systems."""
async def predict_mcp_maintenance_needs(self,
system_data: MCPSystemData) -> AIPredictiveMaintenance:
"""Predict MCP maintenance needs using AI analysis."""
# Get Context7 maintenance patterns
context7_patterns = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="AI predictive MCP maintenance optimization patterns",
tokens=4000
)
# AI predictive analysis
predictive_analysis = self.ai_predictor.analyze_mcp_maintenance_needs(
system_data, context7_patterns
)
# Context7-enhanced maintenance strategies
maintenance_strategies = self.generate_maintenance_strategies(
predictive_analysis, context7_patterns
)
return AIPredictiveMaintenance(
predictive_analysis=predictive_analysis,
maintenance_strategies=maintenance_strategies,
context7_patterns=context7_patterns,
automated_scheduling=self.setup_automated_mcp_maintenance()
)
class AIMCPIntelligenceDashboard:
"""Real-time AI MCP intelligence with Context7 integration."""
async def generate_mcp_intelligence_report(
self, mcp_metrics: List[MCPMetric]) -> MCPIntelligenceReport:
"""Generate AI MCP intelligence report."""
# Get Context7 MCP intelligence patterns
context7_intelligence = await self.context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="AI MCP intelligence monitoring optimization patterns",
tokens=4000
)
# AI analysis of MCP performance
ai_intelligence = self.ai_analyzer.analyze_mcp_metrics(mcp_metrics)
# Context7-enhanced recommendations
enhanced_recommendations = self.enhance_with_context7(
ai_intelligence, context7_intelligence
)
return MCPIntelligenceReport(
current_analysis=ai_intelligence,
context7_insights=context7_intelligence,
enhanced_recommendations=enhanced_recommendations,
optimization_roadmap=self.generate_mcp_optimization_roadmap(
ai_intelligence, enhanced_recommendations
)
)
async def design_ai_mcp_system_with_context7():
"""Design AI MCP system using Context7 patterns."""
# Get Context7 AI MCP patterns
mcp_patterns = await context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="AI enterprise MCP system automation optimization 2025",
tokens=6000
)
# Apply Context7 AI MCP workflow
mcp_workflow = apply_context7_workflow(
mcp_patterns['ai_mcp_workflow'],
system_type=['enterprise', 'high-performance', 'ai-enhanced']
)
# AI coordination for MCP deployment
ai_coordinator = AIMCPCoordinator(mcp_workflow)
# Execute coordinated AI MCP design
result = await ai_coordinator.coordinate_enterprise_mcp_system()
return result
async def implement_ai_mcp_performance(mcp_requirements):
"""Implement AI-driven MCP performance with Context7 integration."""
# Get Context7 performance patterns
performance_patterns = await context7.get_library_docs(
context7_library_id="/modelcontextprotocol/servers",
topic="AI MCP performance optimization analysis patterns",
tokens=5000
)
# AI performance analysis
ai_analysis = ai_performance_analyzer.analyze_requirements(
mcp_requirements, performance_patterns
)
# Context7 pattern matching
performance_matches = match_context7_performance_patterns(ai_analysis, performance_patterns)
return {
'ai_mcp_performance': generate_ai_performant_mcp(ai_analysis, performance_matches),
'context7_optimization': performance_matches,
'implementation_strategy': implement_performance_mcp(performance_matches)
}
ai_mcp_stage:
- name: AI MCP System Design
uses: moai-cc-mcp-plugins
with:
context7_integration: true
ai_optimization: true
predictive_analysis: true
enterprise_performance: true
- name: Context7 MCP Validation
uses: moai-context7-integration
with:
validate_mcp_standards: true
apply_performance_patterns: true
security_optimization: true
class AIMCPLearner:
"""Continuous learning for AI MCP capabilities."""
async def learn_from_mcp_project(self, project: MCPProject) -> MCPLearningResult:
# Extract learning patterns from successful MCP implementations
successful_patterns = self.extract_success_patterns(project)
# Update AI model with new patterns
model_update = self.update_ai_mcp_model(successful_patterns)
# Validate with Context7 patterns
context7_validation = await self.validate_with_context7(model_update)
return MCPLearningResult(
patterns_learned=successful_patterns,
model_improvement=model_update,
context7_validation=context7_validation,
quality_improvement=self.calculate_mcp_improvement(model_update)
)
moai-cc-configuration: MCP system configurationmoai-essentials-debug: MCP debugging and optimizationmoai-cc-mcp-builder: Advanced MCP server generationmoai-foundation-trust: MCP security and compliance.moai/config/config.json conversation_language**End of AI-Powered Enterprise MCP Servers Orchestrator **
Enhanced with Context7 integration and revolutionary AI performance optimization
moai-cc-configuration (AI MCP configuration)moai-essentials-debug (AI MCP debugging)moai-cc-mcp-builder (AI MCP builder integration)moai-foundation-trust (AI MCP security and compliance)moai-context7-integration (latest MCP standards and patterns)