// Create operational runbooks, playbooks, standard operating procedures (SOPs), and incident response guides. Use when documenting operational procedures, on-call guides, or incident response processes.
| name | runbook-creation |
| description | Create operational runbooks, playbooks, standard operating procedures (SOPs), and incident response guides. Use when documenting operational procedures, on-call guides, or incident response processes. |
Create comprehensive operational runbooks that provide step-by-step procedures for common operational tasks, incident response, and system maintenance.
# Incident Response Runbook
## Quick Reference
**Severity Levels:**
- P0 (Critical): Complete outage, data loss, security breach
- P1 (High): Major feature down, significant user impact
- P2 (Medium): Minor feature degradation, limited user impact
- P3 (Low): Cosmetic issues, minimal user impact
**Response Times:**
- P0: Immediate (24/7)
- P1: 15 minutes (business hours), 1 hour (after hours)
- P2: 4 hours (business hours)
- P3: Next business day
**Escalation Contacts:**
- On-call Engineer: PagerDuty rotation
- Engineering Manager: +1-555-0100
- VP Engineering: +1-555-0101
- CTO: +1-555-0102
## Table of Contents
1. [Service Down](#service-down)
2. [Database Issues](#database-issues)
3. [High CPU/Memory Usage](#high-cpu-memory-usage)
4. [API Performance Degradation](#api-performance-degradation)
5. [Security Incidents](#security-incidents)
6. [Data Loss Recovery](#data-loss-recovery)
7. [Rollback Procedures](#rollback-procedures)
---
## Service Down
### Symptoms
- Health check endpoint returning 500 errors
- Users unable to access application
- Load balancer showing all instances unhealthy
- Alerts: `service_down`, `health_check_failed`
### Severity: P0 (Critical)
### Initial Response (5 minutes)
1. **Acknowledge the incident**
```bash
# Acknowledge in PagerDuty
# Post in #incidents Slack channel
Create incident channel
Create Slack channel: #incident-YYYY-MM-DD-service-down
Post incident details and status updates
Assess impact
# Check service status
kubectl get pods -n production
# Check recent deployments
kubectl rollout history deployment/api -n production
# Check logs
kubectl logs -f deployment/api -n production --tail=100
# 1. Check pod status
kubectl get pods -n production -l app=api
# Expected output: All pods Running
# NAME READY STATUS RESTARTS AGE
# api-7d8c9f5b6d-4xk2p 1/1 Running 0 2h
# api-7d8c9f5b6d-7nm8r 1/1 Running 0 2h
# 2. Check pod logs for errors
kubectl logs -f deployment/api -n production --tail=100 | grep -i error
# 3. Check application endpoints
curl -v https://api.example.com/health
curl -v https://api.example.com/api/v1/status
# 4. Check database connectivity
kubectl exec -it deployment/api -n production -- sh
psql $DATABASE_URL -c "SELECT 1"
# 1. Check load balancer
aws elb describe-target-health \
--target-group-arn arn:aws:elasticloadbalancing:... \
--query 'TargetHealthDescriptions[*].[Target.Id,TargetHealth.State]' \
--output table
# 2. Check DNS resolution
dig api.example.com
nslookup api.example.com
# 3. Check SSL certificates
echo | openssl s_client -connect api.example.com:443 2>/dev/null | \
openssl x509 -noout -dates
# 4. Check network connectivity
kubectl exec -it deployment/api -n production -- \
curl -v https://database.example.com:5432
# 1. Check database connections
psql $DATABASE_URL -c "SELECT count(*) FROM pg_stat_activity"
# 2. Check for locks
psql $DATABASE_URL -c "
SELECT pid, usename, pg_blocking_pids(pid) as blocked_by, query
FROM pg_stat_activity
WHERE cardinality(pg_blocking_pids(pid)) > 0
"
# 3. Check database size
psql $DATABASE_URL -c "
SELECT pg_size_pretty(pg_database_size(current_database()))
"
# 4. Check long-running queries
psql $DATABASE_URL -c "
SELECT pid, now() - query_start as duration, query
FROM pg_stat_activity
WHERE state = 'active'
ORDER BY duration DESC
LIMIT 10
"
# Restart all pods (rolling restart)
kubectl rollout restart deployment/api -n production
# Watch restart progress
kubectl rollout status deployment/api -n production
# Verify pods are healthy
kubectl get pods -n production -l app=api
# Check current replicas
kubectl get deployment api -n production
# Scale up
kubectl scale deployment/api -n production --replicas=10
# Watch scaling
kubectl get pods -n production -l app=api -w
# Check deployment history
kubectl rollout history deployment/api -n production
# Rollback to previous version
kubectl rollout undo deployment/api -n production
# Rollback to specific revision
kubectl rollout undo deployment/api -n production --to-revision=5
# Verify rollback
kubectl rollout status deployment/api -n production
# If database connection pool exhausted
kubectl exec -it deployment/api -n production -- sh
kill -HUP 1 # Reload process, reset connections
# Or restart database connection pool
psql $DATABASE_URL -c "SELECT pg_terminate_backend(pid)
FROM pg_stat_activity
WHERE application_name = 'api'
AND state = 'idle'"
# 1. Check health endpoint
curl https://api.example.com/health
# Expected: {"status": "healthy"}
# 2. Check API endpoints
curl https://api.example.com/api/v1/users
# Expected: Valid JSON response
# 3. Check metrics
# Visit https://grafana.example.com
# Verify:
# - Error rate < 1%
# - Response time < 500ms
# - All pods healthy
# 4. Check logs for errors
kubectl logs deployment/api -n production --tail=100 | grep -i error
# Expected: No new errors
Initial Update (within 5 minutes):
๐จ INCIDENT: Service Down
Status: Investigating
Severity: P0
Impact: All users unable to access application
Start Time: 2025-01-15 14:30 UTC
We are investigating reports of users unable to access the application.
Our team is working to identify the root cause.
Next update in 15 minutes.
Progress Update (every 15 minutes):
๐ UPDATE: Service Down
Status: Identified
Root Cause: Database connection pool exhausted
Action: Restarting application pods
ETA: 5 minutes
We have identified the issue and are implementing a fix.
Resolution Update:
โ
RESOLVED: Service Down
Status: Resolved
Resolution: Restarted application pods, reset database connections
Duration: 23 minutes
The service is now fully operational. We are monitoring closely
and will conduct a post-mortem to prevent future occurrences.
Create post-mortem document
Update monitoring
Update runbook
Symptoms:
db_connections_highQuick Fix:
# 1. Check connection count
psql $DATABASE_URL -c "
SELECT count(*), application_name
FROM pg_stat_activity
GROUP BY application_name
"
# 2. Kill idle connections
psql $DATABASE_URL -c "
SELECT pg_terminate_backend(pid)
FROM pg_stat_activity
WHERE state = 'idle'
AND query_start < now() - interval '10 minutes'
"
# 3. Restart connection pools
kubectl rollout restart deployment/api -n production
Symptoms:
slow_query_detectedInvestigation:
-- Find slow queries
SELECT
pid,
now() - query_start as duration,
query
FROM pg_stat_activity
WHERE state = 'active'
ORDER BY duration DESC
LIMIT 10;
-- Check for missing indexes
SELECT
schemaname,
tablename,
seq_scan,
seq_tup_read,
idx_scan
FROM pg_stat_user_tables
WHERE seq_scan > 0
ORDER BY seq_scan DESC
LIMIT 10;
-- Kill long-running query (if needed)
SELECT pg_terminate_backend(12345); -- Replace with actual PID
high_memory_usage, high_cpu_usage# 1. Check pod resources
kubectl top pods -n production
# 2. Check resource limits
kubectl describe pod <pod-name> -n production | grep -A 5 Limits
# 3. Check for memory leaks
kubectl logs deployment/api -n production | grep -i "out of memory"
# 4. Profile application (if needed)
kubectl exec -it <pod-name> -n production -- sh
# Run profiler: node --inspect, py-spy, etc.
# Option 1: Increase resources
kubectl set resources deployment/api -n production \
--limits=cpu=2000m,memory=4Gi \
--requests=cpu=1000m,memory=2Gi
# Option 2: Scale horizontally
kubectl scale deployment/api -n production --replicas=6
# Option 3: Restart problematic pods
kubectl delete pod <pod-name> -n production
# 1. List deployment history
kubectl rollout history deployment/api -n production
# 2. Check specific revision
kubectl rollout history deployment/api -n production --revision=5
# 3. Rollback to previous
kubectl rollout undo deployment/api -n production
# 4. Rollback to specific revision
kubectl rollout undo deployment/api -n production --to-revision=5
# 5. Verify rollback
kubectl rollout status deployment/api -n production
kubectl get pods -n production
# 1. Check migration status
npm run db:migrate:status
# 2. Rollback last migration
npm run db:migrate:undo
# 3. Rollback to specific migration
npm run db:migrate:undo --to 20250115120000-migration-name
# 4. Verify database state
psql $DATABASE_URL -c "\dt"
Level 1 - On-call Engineer (You)
Level 2 - Senior Engineers
Level 3 - Engineering Manager
Level 4 - VP Engineering / CTO
# Kubernetes
kubectl get pods -n production
kubectl logs -f <pod-name> -n production
kubectl describe pod <pod-name> -n production
kubectl exec -it <pod-name> -n production -- sh
kubectl top pods -n production
# Database
psql $DATABASE_URL -c "SELECT version()"
psql $DATABASE_URL -c "SELECT * FROM pg_stat_activity"
# AWS
aws ecs list-tasks --cluster production
aws rds describe-db-instances
aws cloudwatch get-metric-statistics ...
# Monitoring URLs
# Grafana: https://grafana.example.com
# Datadog: https://app.datadoghq.com
# PagerDuty: https://example.pagerduty.com
# Status Page: https://status.example.com
## Best Practices
### โ
DO
- Include quick reference section at top
- Provide exact commands to run
- Document expected outputs
- Include verification steps
- Add communication templates
- Define severity levels clearly
- Document escalation paths
- Include useful links and contacts
- Keep runbooks up-to-date
- Test runbooks regularly
- Include screenshots/diagrams
- Document common gotchas
### โ DON'T
- Use vague instructions
- Skip verification steps
- Forget to document prerequisites
- Assume knowledge of tools
- Skip communication guidelines
- Forget to update after incidents
## Resources
- [PagerDuty Incident Response](https://response.pagerduty.com/)
- [Google SRE Book](https://sre.google/books/)
- [Atlassian Incident Handbook](https://www.atlassian.com/incident-management/handbook)