// Master data science and AI with machine learning, deep learning, and LLMs. Use when building ML models, working with data, or implementing AI features.
| name | data-ai-technologies |
| description | Master data science and AI with machine learning, deep learning, and LLMs. Use when building ML models, working with data, or implementing AI features. |
Comprehensive guide to data science and AI development.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Load data
df = pd.read_csv('data.csv')
# Data exploration
print(df.head())
print(df.describe())
print(df.isnull().sum())
# Data cleaning
df = df.dropna()
df['age'] = pd.to_numeric(df['age'], errors='coerce')
# Grouping and aggregation
summary = df.groupby('category')['sales'].agg(['mean', 'sum', 'count'])
# Visualization
plt.figure(figsize=(10, 6))
plt.scatter(df['age'], df['income'])
plt.xlabel('Age')
plt.ylabel('Income')
plt.show()
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
# Prepare data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Train model
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)
# Evaluate
predictions = model.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
print(f"Accuracy: {accuracy:.2%}")
import torch
import torch.nn as nn
import torch.optim as optim
class SimpleNet(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = torch.relu(self.fc1(x))
return self.fc2(x)
model = SimpleNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Training loop
for epoch in range(10):
for batch_x, batch_y in train_loader:
outputs = model(batch_x)
loss = criterion(outputs, batch_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
from openai import OpenAI
client = OpenAI(api_key="sk-...")
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Explain machine learning in simple terms."}
],
temperature=0.7,
max_tokens=200
)
print(response.choices[0].message.content)