// Use Hypothesis for property-based testing to automatically generate comprehensive test cases, find edge cases, and write more robust tests with minimal example shrinking. Includes Polars parametric testing integration.
| name | hypothesis |
| description | Use Hypothesis for property-based testing to automatically generate comprehensive test cases, find edge cases, and write more robust tests with minimal example shrinking. Includes Polars parametric testing integration. |
Property-based testing framework that generates test cases automatically, finds minimal failing examples through shrinking, and verifies invariants.
Official Docs: https://hypothesis.readthedocs.io/en/latest/
Key Features:
from hypothesis import given
from hypothesis import strategies as st
@given(st.integers())
def test_property(x):
"""Test properties that should always hold"""
assert abs(x) >= 0
@given(st.lists(st.integers()))
def test_list_property(lst):
sorted_lst = sorted(lst)
assert len(sorted_lst) == len(lst)
# Check monotonic property
for i in range(len(sorted_lst) - 1):
assert sorted_lst[i] <= sorted_lst[i + 1]
Full reference: https://hypothesis.readthedocs.io/en/latest/data.html
Common strategies:
st.integers(), st.floats(), st.text(), st.booleans()st.lists(), st.dictionaries(), st.tuples(), st.sets()st.dates(), st.datetimes(), st.timedeltas()st.one_of(), st.sampled_from(), st.recursive()st.from_type(MyClass)from hypothesis import strategies as st
from hypothesis.strategies import composite
@composite
def user_strategy(draw):
age = draw(st.integers(min_value=18, max_value=100))
name = draw(st.text(min_size=1))
return {"name": name, "age": age, "is_adult": age >= 18}
@given(user_strategy())
def test_user(user):
assert user["is_adult"] == (user["age"] >= 18)
st.integers().filter(lambda x: x % 2 == 0) # Filter
st.integers().map(str) # Transform
st.one_of(st.integers(), st.text()) # Choose between strategies
st.sampled_from([1, 2, 3, 4, 5]) # Pick from collection
st.from_type(MyClass) # Infer from type hints
st.builds(MyClass, arg1=st.integers()) # Build instances
from hypothesis import given, settings
from hypothesis import strategies as st
@given(st.integers())
@settings(
max_examples=1000, # Default: 100
deadline=None, # Remove time limit
derandomize=True, # Deterministic ordering
)
def test_example(x):
pass
# Profiles for different environments
settings.register_profile("dev", max_examples=10)
settings.register_profile("ci", max_examples=1000, deadline=None)
# Activate: HYPOTHESIS_PROFILE=ci pytest
Full settings reference: https://hypothesis.readthedocs.io/en/latest/settings.html
from hypothesis import given, assume, note, example, seed
@given(st.integers(), st.integers())
def test_division(x, y):
assume(y != 0) # Skip invalid cases (prefer .filter() instead)
note(f"Testing {x} / {y}") # Add debug info
assert (x / y) * y == x
@given(st.integers())
@example(0) # Always test specific cases
@seed(12345) # Reproducible run
def test_something(x):
pass
For testing complex stateful systems with rule-based state machines.
from hypothesis.stateful import RuleBasedStateMachine, rule, invariant
from hypothesis import strategies as st
class MyStateMachine(RuleBasedStateMachine):
def __init__(self):
super().__init__()
self.data = []
@rule(value=st.integers())
def add(self, value):
self.data.append(value)
@invariant()
def check_invariant(self):
assert isinstance(self.data, list)
TestMachine = MyStateMachine.TestCase
Full stateful testing guide: https://hypothesis.readthedocs.io/en/latest/stateful.html
Polars provides built-in parametric testing strategies for generating DataFrames.
Official docs: https://docs.pola.rs/api/python/stable/reference/api/polars.testing.parametric.dataframes.html
from hypothesis import given
import polars as pl
from polars.testing.parametric import dataframes, column
# Generate DataFrames with specific column schemas
@given(
dataframes(
cols=[
column("id", dtype=pl.Int64),
column("name", dtype=pl.String),
column("value", dtype=pl.Float64),
],
min_size=1,
max_size=100,
)
)
def test_dataframe_property(df: pl.DataFrame):
"""Test properties of DataFrame operations"""
assert df.shape[0] >= 1
assert set(df.columns) == {"id", "name", "value"}
assert df["id"].dtype == pl.Int64
# With Narwhals wrapper
import narwhals as nw
@given(dataframes(cols=[column("a", dtype=pl.Int64)]))
def test_narwhals_operation(df: pl.DataFrame):
nw_df = nw.from_native(df)
result = nw_df.select(nw.col("a") * 2)
assert result.shape[0] == nw_df.shape[0]
Key functions:
dataframes(): Generate DataFrames with specified columnscolumn(name, dtype, ...): Define column schemas with constraintsseries(): Generate standalone SeriesColumn constraints:
null_probability: Control null value frequencymin_size/max_size: Control row countallow_null: Enable/disable nullsunique: Generate unique valuesstrategy: Custom strategy for column valuesst.integers(min_value=0) not st.integers().filter(lambda x: x >= 0)@example(): Test specific edge cases explicitlyassume() overuse: Makes tests slow; use filtered strategies.hypothesis/ in .gitignore: Stores example database locallyCommon issues and solutions:
suppress_health_check@seed() or @settings(derandomize=True)max_examples or use profilesdeadline or set to Nonehypothesis write mymodule.myfunction