// Enterprise comprehensive code review automation with AI-powered quality analysis, TRUST 5 enforcement, multi-language support, Context7 integration, security scanning, performance analysis, test coverage validation, and automated review feedback generation
| name | moai-essentials-review |
| version | 4.0.0 |
| created | "2025-11-11T00:00:00.000Z" |
| updated | "2025-11-12T00:00:00.000Z" |
| status | stable |
| description | Enterprise comprehensive code review automation with AI-powered quality analysis, TRUST 5 enforcement, multi-language support, Context7 integration, security scanning, performance analysis, test coverage validation, and automated review feedback generation |
| keywords | ["code-review","quality-analysis","TRUST-5-validation","security-scanning","performance-analysis","test-coverage","ai-review","context7-integration","review-automation","enterprise-quality"] |
| allowed-tools | ["Read","Write","Edit","Glob","Bash","AskUserQuestion","mcp__context7__resolve-library-id","mcp__context7__get-library-docs","WebFetch"] |
| Field | Value |
|---|---|
| Skill Name | moai-essentials-review |
| Version | 4.0.0 Enterprise (2025-11-12) |
| Core Framework | TRUST 5 principles automation |
| AI Integration | โ Context7 MCP, AI quality analysis |
| Auto-load | On code commit or PR creation |
| Languages | 25+ languages with specialized analysis |
| Lines of Content | 880+ with 16+ production examples |
| Progressive Disclosure | 3-level (automation, analysis, advanced) |
Automates comprehensive code review process with AI-powered quality checks, TRUST 5 principle validation, security vulnerability detection, performance analysis, test coverage verification, and detailed review feedback generation.
Syntax & Linting:
โ Run linters (pylint, eslint, golint, etc.)
โ Check code formatting (black, prettier, gofmt)
โ Type checking (mypy, TypeScript, go vet)
Security Scanning:
โ Dependency vulnerabilities (safety, npm audit, cargo audit)
โ Credential detection (git-secrets, detect-secrets)
โ OWASP Top 10 checks
Test Coverage:
โ Coverage โฅ85%
โ Critical paths covered
โ Edge cases tested
TRUST 5 Validation:
โ T - Tests present and comprehensive
โ R - Code readable and maintainable
โ U - Unified with codebase patterns
โ S - Security best practices
Design Analysis:
โ SOLID principles
โ Design patterns appropriate
โ Scalability concerns
โ Performance implications
Architectural Review:
โ Does solution fit architecture?
โ Any alternatives considered?
โ Trade-offs documented?
Business Logic:
โ Does it solve the problem?
โ Any edge cases missed?
โ User experience impact?
Documentation:
โ README updated
โ API docs current
โ Examples provided
class CodeQualityAnalyzer:
"""AI-powered code quality analysis."""
async def analyze(self, code: str) -> QualityReport:
metrics = {
"complexity": calculate_cyclomatic(code), # Should be <10
"testability": assess_testability(code), # Should be >0.85
"maintainability": calculate_maintainability(code), # Should be >80
"readability": assess_readability(code), # Should be clear
"security_issues": scan_for_vulnerabilities(code), # Should be 0
"performance_concerns": detect_patterns(code), # Should be minimal
}
return QualityReport(metrics)
T - Test First:
โโ Coverage โฅ85%? โ
โโ Happy path covered? โ
โโ Edge cases tested? โ
โโ Error scenarios? โ
R - Readable:
โโ Functions <50 lines? โ
โโ Meaningful names? โ
โโ Comments explain WHY? โ
โโ Complexity <10? โ
U - Unified:
โโ Follows team patterns? โ
โโ Consistent style? โ
โโ Error handling aligned? โ
โโ Logging strategy consistent? โ
S - Secured:
โโ Inputs validated? โ
โโ No hardcoded secrets? โ
โโ SQL injection prevention? โ
โโ XSS prevention? โ
T - Trackable:
โโ SPEC referenced? โ
Critical Checks:
โ Hardcoded credentials (API keys, passwords)
โ SQL injection vectors
โ XSS vulnerabilities
โ CSRF token absence
โ Unsafe deserialization
โ Privilege escalation paths
High Priority:
โ Missing input validation
โ Weak cryptography
โ Insecure randomness
โ Race conditions
โ Dependency vulnerabilities
Medium Priority:
โ Missing error messages
โ Insufficient logging
โ Memory leaks
โ Resource exhaustion risks
Detection Patterns:
โ O(nยฒ) algorithms in O(n) context
โ Unnecessary file I/O in loops
โ Blocking operations in async code
โ Memory allocations in hot paths
โ Inefficient string concatenation
โ Database queries without indexing
Optimization Suggestions:
โ Use more efficient algorithm
โ Cache results
โ Batch operations
โ Use async/await properly
โ Index database columns
# Code Review Report
## Summary
โ
**Status**: APPROVED (with 2 minor notes)
- Test Coverage: 87% โ
- Security: โ Clean
- Performance: โ No concerns
- Design: โ Good
- TRUST 5: All checks passed
## TRUST 5 Assessment
### T - Test First: โ
Coverage: 87% (target โฅ85%)
- Happy path: โ Covered
- Edge cases: โ 5 tests
- Error scenarios: โ 3 tests
### R - Readable: โ
All functions <50 lines, clear names
### U - Unified: โ
Consistent with team patterns
### S - Secured: โ
- No credentials: โ
- Input validation: โ
- Error messages safe: โ
### T - Trackable: โ
- SPEC-042 referenced
- 5 tests linked
- Code linked to PR
## Detailed Findings
### Strengths
1. โ
Excellent test coverage (87%)
2. โ
Clean, readable code
3. โ
Proper error handling
4. โ
Security best practices followed
### Minor Notes
1. โ ๏ธ Function `calculate_discount` could use type hints
2. โ ๏ธ Consider adding cache for frequently called API
### Recommendations
1. Add type hints to improve IDE support
2. Consider Redis caching for API calls
## Approval
โ
**Ready to merge** - All TRUST 5 checks passed
Live Security Patterns: Get latest vulnerability detection from official databases
Performance Optimization: Context7 provides version-specific optimization patterns
Language Updates: Context7 includes latest language/framework best practices
moai-alfred-code-reviewer (Manual review guidance)moai-essentials-debug (Debugging techniques)For detailed analysis guidelines: reference.md
For real-world examples: examples.md
Last Updated: 2025-11-12
Status: Production Ready (Enterprise )